Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 229-233    
  无机非金属及其复合材料 |
混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究
于海洋, 李地红, 代函函, 高群
北京建筑大学土木与交通工程学院,北京 100044
Study on Bending Properties of Hybrid Fiber Reinforced Strain HardeningCementitious Composites
YU Haiyang, LI Dihong, DAI Hanhan, GAO Qun
College of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 4314KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了聚乙烯醇-玄武岩纤维混杂应变硬化水泥基复合材料(PB-SHCC)的弯曲性能。水泥基体材料水胶比为0.25,混杂体系中聚乙烯醇纤维分别为体积含量的1.5%和1.7%,再混杂一定体积含量的玄武岩纤维,制备成聚乙烯醇-玄武岩纤维混杂应变硬化水泥基复合材料,标准养护28 d后对该复合材料进行三点弯曲试验。结果表明,PB-SHCC具有弯曲应变硬化的特性,弯曲挠度较单掺体系会有所削弱,但削弱程度不大,仍具有较高的延性;玄武岩纤维的掺量在0.1%~0.3%以及0.8%~1.0%时,均利于复合材料的初裂强度及抗弯强度的提高。此外,本工作基于ASTM C1018和JSCE-SF4标准,改进并定义了弯曲韧性指数和弯曲韧性因子,能够简洁有效地评价SHCC材料的弯曲韧性,且两类指标吻合性较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于海洋
李地红
代函函
高群
关键词:  聚乙烯醇纤维  玄武岩纤维  纤维混杂  应变硬化水泥基复合材料  三点弯曲  弯曲韧性    
Abstract: The bending properties of polyvinyl alcohol-basalt fiber hybrid strain hardening cementitious composites (PB-SHCC) were studied in this paper. The water-binder ratio of cement matrix material was 0.25, the volume content of polyvinyl alcohol fiber in the hybrid system was 1.5% and 1.7% respectively, and then mixed with a certain volume content of basalt fiber to prepare polyvinyl alcohol-basalt fiber hybrid strain hardening cement matrix composites. A three-point bending test was carried out after standard curing for 28 d of the PB-SHCC. The test results show that PB-SHCC has the characteristics of bending strain hardening, and the bending deflection will be weakened compared with the single blending system, but the weakening degree is not great, and it still has high ductility; when the content of basalt fiber is 0.1%—0.3% and 0.8%—1.0%, it is beneficial to the improvement of initial crack strength and bending strength of the composites. In the evaluation of bending toughness, based on ASTM C1018 and JSCE-SF4 standards, the bending toughness index and bending toughness factor are improved and defined, which can succinctly and effectively evaluate the bending toughness of SHCC materials. The two indexes have a good agreement.
Key words:  polyvinyl alcohol fiber    basalt fiber    fiber hybrid    strain hardening cementitious composites    three-point bending    bending toughness
                    发布日期:  2020-07-01
ZTFLH:  TB332  
基金资助: 北京建筑大学研究生创新项目
作者简介:  于海洋,2013年毕业于西藏大学土木工程专业,2013年至2017年任职于西藏大学农牧学院(现西藏农牧学院),现为北京建筑大学土木与交通工程学院硕士研究生,从事土木工程材料的研究工作。目前主要研究方向为纤维增强水泥基复合材料、工程水泥基复合材料;李地红,北京建筑大学教授,硕士研究生导师,1998年于哈尔滨建筑大学获博士学位。1986年至2014年任职于哈尔滨工业大学材料科学与工程学院,2014年至今任职于北京建筑大学土木与交通工程学院。其中,2000—2001年作为访问学者在日本东京大学从事舣装材料结构研究-船舶材料评价工作。李地红教授多年来一直从事聚合物基复合材料的教学、科研工作,主要研究聚合物基复合材料结构分析、结构设计、结构与工艺一体化设计;曾参与大飞机专项、风云卫星子课题、飞行兵器减重专项子课题的研究工作,获中国人民解放军科技进步奖二等奖一次。近年来,团队主要从事复合材料层合板低能量冲击损伤表征技术研究、结构镶嵌式混凝土补强加固技术研究和纤维增强水泥基复合材料研究。
引用本文:    
于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
YU Haiyang, LI Dihong, DAI Hanhan, GAO Qun. Study on Bending Properties of Hybrid Fiber Reinforced Strain HardeningCementitious Composites. Materials Reports, 2020, 34(Z1): 229-233.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/229
1 Li V C, Mishra D K, Wu H C. Materials and Structures,1995,28(10),586.
2 Kanda T, Li V C. Journal of Advanced Concrete Technology,2006,4(1),59.
3 Li V C. Engineering,2019,5(2),250.
4 Wu C, Leung C K Y, Li V C. Cement and Concrete Research,2018,107,253.
5 Wu C, Li V C. Composite Structures,2017,178,372.
6 王义超,侯梦君,余江滔,等.材料导报:研究篇,2018,32(10),3535.
7 李庆华,黄博滔,周宝民,等.建筑结构学报,2016,37(1),135.
8 俞可权,余江滔,李凌志,等.建筑结构,2019,49(2),29.
9 高照宇,张德刚,赵永生,等.混凝土与水泥制品,2013(9),51.
10 Ma H, Cai J, Lin Z, et al. Construction and Building Materials,2017,151,1.
11 Zhou J, Qian S, Beltran M G S, et al. Materials and Structures,2010,43(6),803.
12 韩世诚,张聪,华渊.硅酸盐通报,2019(1),77.
13 Choi W C, Jang S J, Yun H D. Composites Part B: Engineering,2017,108,35.
14 吴智深.江苏建材,2018(4),15.
15 张楚楚.玄武岩纤维增强水泥基材料及其复合梁高性能化研究.硕士学位论文,东南大学,2018.
16 Zhang Z, Qian S, Liu H, et al. Transportation Research Record,2017,2640(1),78.
17 ASTM C1018. Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete (Using beam with third-point loa-ding), United States,1997.
18 Japan Society of Civil Engineers. Method of test for flexural strength and flexural toughness of fiber reinforced concrete. Japan,1984.
19 高丹盈,赵亮平,冯虎,等.建筑材料学报,2014,17(5),783.
20 李贺东,徐世烺.土木工程学报,2010,43(3),32.
[1] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[2] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[3] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[6] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[7] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[8] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[9] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[10] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[11] 刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
[12] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed