Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 153-156    
  无机非金属及其复合材料 |
碳纳米管增强UO2燃料力学性能研究
吴学志, 尹邦跃, 郑新海
中国原子能科学研究院反应堆工程技术研究部,北京 102413
Study on Mechanical Properties of CNTs Reinforced UO2 Fuel
WU Xuezhi, YIN Bangyue, ZHENG Xinhai
Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 2940KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用粉末冶金法制备碳纳米管(CNTs)增强二氧化铀(UO2)复合燃料芯块,研究了复合燃料的弯曲强度、压缩强度和硬度等力学性能,分析了CNTs掺杂量和长径比(L/D)对复合燃料力学性能的影响规律,探讨了CNTs的增强机理。结果表明:随CNTs掺杂量的增加,UO2-CNTs复合燃料的弯曲强度、压缩强度和硬度都有所提高,当掺杂CNTs体积含量为12%时,复合燃料的弯曲强度、压缩强度和硬度达到峰值,分别提高约45.65%、37.01%和19.61%,当掺杂CNTs体积含量超过12%后,复合燃料的力学性能增加呈下降趋势;掺杂不同L/D的CNTs对复合燃料力学性能影响不同,当掺杂CNTs的L/D为9×103时,复合燃料的弯曲强度、压缩强度和硬度提高最大,分别提高约57.61%、54.32%和34.87%。SEM分析表明,掺杂适合体积含量和L/D的CNTs是影响复合燃料力学性能的关键因素,否则会导致CNTs在UO2基体中团聚,不利于燃料力学性能的提高;CNTs对UO2燃料力学性能的强化源于外部载荷从UO2基体向CNTs的转移过渡,通过纤维桥联、纤维拔出吸收断裂功,改变裂纹行为等方式来实现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴学志
尹邦跃
郑新海
关键词:  二氧化铀  碳纳米管  复合燃料  弯曲强度  压缩强度  硬度    
Abstract: Carbon nanotubes (CNTs) reinforced UO2 fuel pellets were prepared by powder metallurgy, the flexural strength, compressive strength and hardness of composite fuels were studied, the effects of CNTs doping amount and length-diameter ratio (L/D) on the mechanical properties of composite fuels were analyzed, the strengthening mechanism of CNTs was discussed. The results show that with the increase of CNTs doping, the flexural strength, compressive strength and hardness of UO2-CNTs composite fuel increased, when the volume content of CNTs was 12%, the flexural strength, compressive strength and hardness of the composite fuel reached their peak values, which increased by 45.65%, 37.01% and 19.61%, respectively, when the volume content of CNTs exceeded 12%, the mechanical properties of the composite fuel increased in a downward trend. The effects of CNTs doped with different length-diameter ratio (L/D) on the mechanical properties of composite fuels were diffe-rent, when the length-diameter ratio (L/D) was 9×103, the flexural strength, compressive strength and hardness of the composite fuel increased by 57.61%, 54.32% and 34.87% respectively. SEM analysis showed that doping CNTs with suitable volume fraction and length-diameter ratio (L/D) are the key factor affecting the mechanical properties of composite fuel, otherwise CNTs will agglomerate in UO2 matrix, which is not conducive to the improvement of mechanical properties of fuel. The enhancement of mechanical properties of UO2 fuel by CNTs results from the transition of external load from UO2 matrix to CNTs, which is realized by means of fiber bridging, fiber pulling-out, absorbing fracture energy and changing crack behavior.
Key words:  UO2    CNTs    composite fuel    flexural strength    compression strength    hardness
                    发布日期:  2020-07-01
ZTFLH:  TL352.21  
作者简介:  吴学志,中国原子能科学研究院副研究员。2006年9月至2016年8月,在中国原子能科学研究院获得核能科学与工程硕士学位和核燃料循环与材料专业工学博士学位,毕业后留院从事科研工作。担任多项国家重点科研课题负责人,申请国家发明专利6项,其中授权4项。研究工作包括压水堆、空间核动力以及快堆用先进核燃料与材料的基础理论和应用研究。
引用本文:    
吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
WU Xuezhi, YIN Bangyue, ZHENG Xinhai. Study on Mechanical Properties of CNTs Reinforced UO2 Fuel. Materials Reports, 2020, 34(Z1): 153-156.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/153
1 Fink J K, Chasanov M G, Leibowitz L. Journal of Nuclear Materials,1981,102,17.
2 Brandt R, Neuer G. Journal of Non Equilibrium Thermodynamics,1976,1,3.
3 Zhou X, Zhou J J, Quyang Z C. Physical Review B,2000,62,13692.
4 Treacy M M J, Ebbesen W, Gibson J M. Nature,1996,381,678.
5 Cornwell C F. Solid State Communications,1997,101(8),555.
6 Cornwell C F, Wille L T. Journal of Chemical Physics,1998,109(2),763.
7 Bower C, Rosen R, Jin L. Applied Physics Letters,1999,74,3317.
8 Hayashida T, Pan L, Nakayama Y. Physica B,2002,323,352.
9 Bieruk M J, Liaguno M C, Rasosavijevi C M. Applied Physics Letters,2002,80,2767.
10 姬海宁,张怀武.磁性材料及器件,2001,32(4),37.
11 吴学志,尹邦跃.原子能科学技术,2016,50(2),314
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[3] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[4] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[5] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[6] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[7] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[8] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[9] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[10] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[11] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[12] 阮超, 陈名海. 电弧放电法制备碳纳米管研究进展[J]. 材料导报, 2020, 34(11): 11129-11136.
[13] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[14] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[15] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed