Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11106-11113    https://doi.org/10.11896/cldb.19040189
  无机非金属及其复合材料 |
钠离子电池Sb基负极材料的研究进展
张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁
昆明理工大学冶金与能源工程学院,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,昆明650093
Research Progress on Sb-based Anode Material for Sodium-ion Batteries
ZHANG Yingjie, ZHANG Jufeng, DUAN Jianguo, REN Ting, DONG Peng, WANG Ding
Key Laboratory of Advanced Battery Materials of Yunnan Province,National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 6861KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为钠离子电池负极材料的一种,Sb基负极材料拥有比碳材料更高的理论比容量和低成本的优势,极具商业化应用前景,受到研究者们的密切关注。尽管Sb金属单质具有安全性能好、合成方便等诸多优点,但该电极材料在反复充放电过程中存在以下问题:(1)较大的体积膨胀,极易引起钠离子的不可逆脱嵌,从而导致充放电效率较低;(2)晶体结构易坍塌,材料粉化严重,从而造成电极材料长周期循环稳定性差,容量大幅衰减。
   研究者们通过调控Sb金属单质的粒径、形貌和结构等手段,显著改善了其电化学性能。即便如此,仍然无法有效解决Sb金属单质在循环过程中因体积膨胀造成的充放电效率低和容量迅速衰减的问题。为了解决这一问题,人们设计开发了Sb/C复合材料以及Sb基化合物材料。Sb/C复合材料利用碳材料良好的柔韧性、优异的导电性以及形貌和结构皆可调控等优势,在一定程度上改善了改性后电极材料的循环性能。Sb合金材料是由活性金属Sb和其他活性金属或非活性金属合金化而成,体积效应得到抑制,放电容量提高。Sb氧化物和Sb硫化物等Sb的非金属化合物材料反应机理为合金化反应和转化反应机理共存,均可贡献容量,因而此类材料具有较高的比容量。为同时达到改善材料结构性能和抑制体积膨胀的目的,可通过构筑结构较为复杂但电化学性能优异的Sb的其他复合物材料。
   本文对比分析了不同Sb基材料的储钠机理、性能特点、存在的问题以及电化学性能的优化方法。同时指出单一的改性方法并不能显著提升材料的性能,而结构优化、合金成分控制以及优选还原剂、粘结剂和电解质添加剂等多元改性工艺的综合设计,可以更有效地改善Sb基负极材料的电化学性能,最后提出现阶段Sb基材料作为钠离子电池负极材料所面临的挑战及未来商业化应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张英杰
张举峰
段建国
任婷
董鹏
王丁
关键词:  钠离子电池  负极材料  Sb基  改性方法    
Abstract: Sb-base anode materials are considered as a promising material for sodium ions batteries (SIBs) and have attracted close attention of researchers, due to its higher theoretical specific capacity and lower cost than carbon materials. Although Sb metal has many advantages such as good safety performance and easy to synthesis, some problems still exist during the repeated charging/discharging processes:(1)due to the larger volume expansion, sodium ions irreversible detaching freely which declines its cycling efficiency;(2)the crystal structure collapse and material pulverization can bring about the cycle stability of electrode materials diminish and the capacity greatly reduce.
The electrochemical properties of Sb metal have been greatly enhanced by means of morphology and structure regulation.Even so, it is still unable to effectively solve the problem of low charging and discharging efficiency and rapid capacity decay arisen from volume expansion of Sb metal during cycling.In order to solve this problem, Sb/C composite materials and Sb-base alloy materials were designed and developed.Sb/C composite materials makes use of the advantages of carbon materials, such as good flexibility, excellent conductivity and adjustable morphology and structure, etc, so that the cycling performance of modified electrode material has been improved to some extent. The reaction mechanism of Sb-based non-metallic compound materials, such as Sb oxides and Sb sulfides, is the coexistence of alloying reaction and transformation reaction mechanism, so both can contribute capacity, making such materials have a higher specific capacity.In order to stabilize structural properties and restrain volume expansion at the same time, other composite materials of Sb with complex structure but excellent electrochemical performance can be constructed.
In this paper, some common Sb-based(Sb metal, Sb/C compounds, alloy, oxides, sulfides and other composites of Sb)anode materials for SIBs are introduced. Meanwhile,different materials of their storage mechanism of sodium, performance characteristics, existing problems and optimization methods for electrochemical performance are compared and analyzed. It was worth noting that single modification method cannot greatly improve the electrochemistry properties of these materials. A more effective way is to apply various modification methods comprehensively, such as optimum structure, well control of alloy composition as well as select better reducing agents, binders and electrolyte additives, etc. Finally, challenges of Sb-based anode materials for sodium ion batteries and their future commercial application are presented.
Key words:  sodium ion batteries    anode materials    Sb-based    modification methods
                    发布日期:  2020-05-13
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(51804149;51764029);云南省应用基础研究计划(2018FD039)
通讯作者:  wangdingliverpool@foxmail.com   
作者简介:  张英杰,昆明理工大学冶金与能源工程学院,教授,博士研究生导师。1980—1987年在哈尔滨工业大学应用化学系学习,1987年获应用电化学专业工学硕士学位,1999年获昆明理工大学有色金属冶金专业工学博士学位,1997年8月至1998年2月在英国曼彻斯特大学作高级访问学者,主要从事应用电化学领域的研究。王丁,昆明理工大学冶金与能源工程学院,副教授。2016年6月毕业于中南大学,获工学博士学位。同年加入锂离子电池及材料制备技术国家地方联合工程实验室工作至今,主要从事高镍三元正极材料基础研究及产业化。
引用本文:    
张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
ZHANG Yingjie, ZHANG Jufeng, DUAN Jianguo, REN Ting, DONG Peng, WANG Ding. Research Progress on Sb-based Anode Material for Sodium-ion Batteries. Materials Reports, 2020, 34(11): 11106-11113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040189  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11106
1 Kubota K, Dahbi M, HosakA T,et al. Chemical Record, 2018, 18(4),459.
2 Zhang Y J, Zhu Z Y, Dong P, et al. Acta Physico-ChimicaSinica, 2017, 33(6), 1085(in Chinese).
张英杰, 朱子翼, 董鹏, 等.物理化学学报, 2017, 33(6), 1085.
3 Goriparti S,Miele E D,Angrli S, et al. Journal of Power Sources, 2014,257, 421.
4 Yabuuchi N, Kubota K, Dahbi M, et al. Chemical Reviews, 2014, 114(23), 11636.
5 Kim S W, Seo D H, Ma X H, et al. Advanced Energy Materials, 2012, 2(7),710.
6 Vignarooban K, Kushagra R, Elango A, et al. International Journal of Hydrogen Energy, 2016, 41(4), 2829.
7 Slater M D,Kim D,Lee E, et al. Advanced Functional Materials, 2013, 23(8), 947.
8 Obrovac M N,Chevrier V L, et al.Chemical Reviews,2014, 114(23),11444.
9 Hwang J Y, Myung S T, Sun Y K. Chemical Society Reviews, 2017, 46(12), 3529.
10 Bommier C, Ji X. Small, 2018, 14(16), 1703576.
11 Ong S P,Chevrier V L, Hautier G J, et al. Energy & Environmental Science, 2011, 4(9),3680.
12 Zhang Y J, Zhu Z Y, Dong P, et al. Chemical Industry and Engineering Progress, 2017, 36(11), 4106(in Chinese).
张英杰, 朱子翼, 董鹏, 等.化工进展,2017,36(11),4106.
13 Yabuuchi N, Kubota K, Dahbi M, et al. Chemical Reviews, 2014, 114(23), 11636.
14 Scrosati B, JÜrgen G, et al. Journal of Power Sources, 2010, 195(9),2419.
15 Choi J H, Ha C W, Choi H Y, et al. Journal of Power Sources, 2018, 386, 34.
16 Hwang Y, Myung S T, Sun Y K,et al. Chemical Society Reviews, 2017, 46(12), 3529.
17 Liu Z M, Song T P, Ungyu J H, et al.Journal of Materials Chemistry A, 2018, 6(18), 8159.
18 Lee C W, Kim J C, Park S, et al. Nano Energy, 2015, 15, 479.
19 Xu X,Zhou D, QinX, et al. Nature Communications, 2018, 9(1), 3870.
20 Baggetto L,Hah H Y,Jumas J C, et al.Journal of Power Sources, 2014, 267, 329.
21 He J, Wei Y Q, Zhai T Y, et al. Materials Chemistry Frontiers, 2018, 2(3),437.
22 Darwiche A, Marino C, Sougrati M, et al. Journal of American Chemical Society, 2012, 134(51), 20805.
23 Li Z, Tan X, Li P, et al. Nano Letters, 2015, 15, 6339.
24 He K, Kravchyk K, Walter M, et al.Nano Letters, 2014, 14(3), 1255.
25 Hou H, Jing M, Yang Y, et al. ACS Applied Material Interfaces, 2014, 6(18), 16189.
26 Song J H, Yan P F, Luo L L, et al. Nano Energy, 2017, 40, 504.
27 Liu Z M,YuX Y, Lou X W,et al.Energy & Environmental Science, 2016, 9, 2314.
28 Gu J, Du Z, Zhang C J, et al.Advanced Energy Materials, 2017, 7, 1700447.
29 Wang J Z, Yang J, Yin W Y, et al.Journal of Materials Chemistry A, 2017, 5, 20623.
30 Wu L, Hu X, Qian J, et al.Energy & Environmental Science, 2014, 7(1), 323.
31 Walter M, Dosward S, Kovalenko M V, et al.Journal of Materials Che-mistry A, 2016, 4,7053.
32 Nie L, Gan Y, Cheng X, et al.Advanced Function Materials, 2016, 26,43.
33 Wang L, Wang C, Zhang N, et al.ACS Energy Letters, 2016, 2(1), 256.
34 Liu S, Feng J K, Bian X F, et al.Energy & Environmental Science, 2016,9(4), 1229.
35 Farbod B, Cui K, Kalisvaart P W, et al. ACS Nano, 2014, 8(5),4415.
36 Yi Z,Han Q,Han X, et al.Chemical Engineering Journal, 2017, 315(1), 101.
37 Li Z, Tan X, Li P, et al.Nano Letters, 2015, 15(10), 6339.
38 Nguyen L T, Salunkherb T T, Vo T T, et al.Journal of Power Sources, 2019, 414,470.
39 ZhuY, Nie P, Shen L,et al. Nanoscale, 2015, 7, 3309.
40 Chen C, Fu K, Lu Y, et al. RSC Advances, 2015, 5(39), 30793.
41 Wang N, Bai Z, Qian Y, et al.ACS Applied Material Interfaces, 2017, 9, 447.
42 Luo W,Calas A,Tang C, et al.ACS Applied Material Interfaces, 2016, 8(51), 35219.
43 Duan J,Zhang W,Wu C, et al.Nano Energy, 2015, 16,479.
44 Hou H S, Jing M J, Huang Z D, et al.ACS Applied Material Interfaces, 2015, 7, 19362.
45 Lu Y Y, Zhang N, Jiang S H, et al.Nano Letters, 2017, 17(6), 3668.
46 Yoon S K, Manthiram A.Chemistry of Materials, 2009, 21(16), 3898.
47 Wang N B, Qian Z, Yang Y, et al.Advanced Materials, 2016, 28(21), 4126.
48 Li P X, Guo X, Wang S J, et al.Journal of Materials Chemistry A, 2019, 7, 2553
[1] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[2] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[3] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[6] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[7] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[8] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[11] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[12] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[13] 黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷. 钠离子电池碳基负极材料的研究进展*[J]. 材料导报, 2017, 31(21): 19-23.
[14] 张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
[15] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed