Please wait a minute...
材料导报  2017, Vol. 31 Issue (21): 19-23    https://doi.org/10.11896/j.issn.1005-023X.2017.021.003
  材料综述 |
钠离子电池碳基负极材料的研究进展*
黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷
陕西科技大学材料科学与工程学院,西安 710021
Advances in Carbon-based Anode Materials for Sodium Ion Batteries
HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting
School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 2013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于能源资源短缺和环境问题,开发新型储能材料迫在眉睫。锂离子电池应用广泛,但其在地壳中的含量较低,限制了它的发展。钠与锂具有相似的化学性质,可以替代锂成为新一代储能材料。碳基储钠负极材料分为天然石墨、石墨烯、软碳材料和硬碳材料。重点介绍了这些碳材料的定义、存在的问题和解决方案,对碳材料的改性及其在钠离子电池中的应用有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄剑锋
王彩薇
李嘉胤
曹丽云
朱东岳
席婷
关键词:  钠离子电池  碳基材料  负极材料    
Abstract: Due to the shortage of energy resources and the problem of environmental pollution, it is essential to adopt proper ways to develop new energy storage materials to solve the problem. Lithium ion battery has been widely used, but the content of lithium elements on the earth is less, which limited the development of lithium-ion battery. The chemical properties of sodium and lithium are similar, which means sodium can replace the lithium as a new generation of energy material. Carbon material for sodium anode storage can be divided into natural graphite, graphene, soft carbon materials and hard carbon materials. This review aims to introduce the definition, problems and solutions of carbon materials, which has significant influence on modification of carbon mate-rials and applications in sodium ion batteries.
Key words:  sodium ion battery    carbon-based material    anode
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB322  
基金资助: *国家自然科学基金(51672165)
作者简介:  黄剑锋:男,1970年生,博士,教授,博士研究生导师,研究方向为功能薄膜及涂层材料、陶瓷材料、纳米材料、复合材料等 E-mail:huangjfsust@126.com
引用本文:    
黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷. 钠离子电池碳基负极材料的研究进展*[J]. 材料导报, 2017, 31(21): 19-23.
HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries. Materials Reports, 2017, 31(21): 19-23.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.003  或          http://www.mater-rep.com/CN/Y2017/V31/I21/19
1 Jian Z L. Research on electrode material of new energy storage battery[D]. Wuhan:Wuhan University of Technology, 2012(in Chinese).
简泽浪. 新型储能电池电极材料研究[D].武汉:武汉理工大学,2012.
2 He H N, Wang H Y, Tang Y G, et al. Negative electrode material for sodium ion battery[J]. Prog Chem, 2014(4):572(in Chinese).
何菡娜, 王海燕, 唐有根,等. 钠离子电池负极材料[J]. 化学进展, 2014(4):572.
3 Evarts E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015,526(7575):93.
4 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015,7(1):19.
5 Ye F P, Wang L, Lian F, et al. Research progress of sodium ion battery[J]. Prog Chem, 2013(8):1789(in Chinese).
叶飞鹏, 王莉, 连芳,等. 钠离子电池研究进展[J]. 化工进展, 2013(8):1789.
6 Li H, Wu C, Wu F, et al. Sodium ion batteries: A new option for energy storage batteries[J]. Acta Chim Sin, 2014,72(1):21(in Chinese).
李慧, 吴川, 吴锋,等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014,72(1):21.
7 Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013,23(8):947.
8 Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. Acs Nano, 2013,7(12):11004.
9 Baggetto L, Hah H Y, Jumas J C, et al. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119 Sn and 121 Sb M?ssbauer spectroscopies[J]. J Power Sources, 2014,267(267):329.
10Lu Y C, Ma C, Alvarado J, et al. Electrochemical properties of tin oxide anodes for sodium-ion batteries[J]. J Power Sources, 2011,17(4):403.
11Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chem Mater, 2011,23(18):4109.
12Jernej B, Froebe A, Ajhler T, et al. Conversion reactions for sodium-ion batteries[J]. Phys Chem Chem Phys Pccp, 2013,15(38):15876.
13Yin J, Qi L, Wang H. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors[J]. ACS Appl Mater Interfaces, 2012,4(5):2762.
14Kim H, Hong J, Park Y, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv Funct Mater, 2015,25(4):534.
15Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. J Power Sources, 2015,293:626.
16Ji L, Meduri P, Agubra V, et al. Graphene-based nanocomposites for energy storage[J]. Adv Energy Mater, 2016,6(16):1502159.
17Choe J H, Kim N R, Lee M E, et al. Flexible graphene stacks for sodium-ion storage[J]. Chemelectrochem, 2017,4:716.
18Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J]. Adv Energy Mater, 2014,4(8):1079.
19Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental Sci, 2011,4(9):3342.
20Ling C, Mizuno F. Boron-doped graphene as a promising anode for Na-ion batteries[J]. Phys Chem Chem Phys, 2014,16(22):10419.
21Choi S H, Ko Y N, Lee J K, et al. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties[J]. Adv Funct Mater, 2015,25(12):1780.
22Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nat Commun, 2014,5:4033.
23Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Lett, 2015,16(1):543.
24Jia X P, Chen M. Research progress of electrode materials for sodium ion batteries[J]. J China Academy of Electronic Science, 2012,7(6):581(in Chinese).
贾旭平, 陈梅. 钠离子电池电极材料研究进展[J]. 中国电子科学研究院学报, 2012,7(6):581.
25Jian Z, Bommier C, Luo L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chem Mater, 2017,29(5):2314.
26Miao Y, Zong J, Liu X. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries[J]. Mater Lett, 2017,188:355.
27Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling perfor-mance[J]. J Mater Chem A, 2016,4(17):6472.
28Luo W, Jian Z, Xing Z, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. Acs Central Sci, 2015,1(9):516.
29Pan H L, Hu Y S, Li H, et al. Research progress of electrode material structure of room temperature sodium ion energy storage battery[J]. Chinese J Sci Chem, 2014(8):1269(in Chinese).
潘慧霖, 胡勇胜, 李泓,等. 室温钠离子储能电池电极材料结构研究进展[J]. 中国科学化学, 2014(8):1269.
30Lotfabad E M, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. Acs Nano, 2014,8(7):7115.
31Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Appl Mater Interfaces, 2015,7(9):5598.
32Xiao L, Cao Y, Henderson W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2015,19:279.
33Prabakar S J R, Jeong J, Pyo M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries[J]. Electrochimica Acta, 2015,161:23.
34Tang K, Fu L, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv Energy Mater, 2012,2(7):873.
35Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015,6:7221.
36Wang Z, Long Q, Yuan L, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013,55(2):328.
37Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. Chemsuschem, 2013,6(1):56.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[4] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[5] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[6] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[7] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[8] 张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
[9] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[10] 夏文明,唐仁衡,王辉,王英,肖方明,朱敏,孙泰. 预歧化处理的高性能锂离子电池SiO/C负极材料*[J]. 材料导报编辑部, 2017, 31(10): 11-15.
[11] 杨绍斌,张琴,沈丁,董伟,刘超. 滴加速率对TiO2/RGO复合材料结构和储钠性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 1-5.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed