Please wait a minute...
材料导报  2017, Vol. 31 Issue (21): 19-23    https://doi.org/10.11896/j.issn.1005-023X.2017.021.003
  材料综述 |
钠离子电池碳基负极材料的研究进展*
黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷
陕西科技大学材料科学与工程学院,西安 710021
Advances in Carbon-based Anode Materials for Sodium Ion Batteries
HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting
School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 2013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于能源资源短缺和环境问题,开发新型储能材料迫在眉睫。锂离子电池应用广泛,但其在地壳中的含量较低,限制了它的发展。钠与锂具有相似的化学性质,可以替代锂成为新一代储能材料。碳基储钠负极材料分为天然石墨、石墨烯、软碳材料和硬碳材料。重点介绍了这些碳材料的定义、存在的问题和解决方案,对碳材料的改性及其在钠离子电池中的应用有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄剑锋
王彩薇
李嘉胤
曹丽云
朱东岳
席婷
关键词:  钠离子电池  碳基材料  负极材料    
Abstract: Due to the shortage of energy resources and the problem of environmental pollution, it is essential to adopt proper ways to develop new energy storage materials to solve the problem. Lithium ion battery has been widely used, but the content of lithium elements on the earth is less, which limited the development of lithium-ion battery. The chemical properties of sodium and lithium are similar, which means sodium can replace the lithium as a new generation of energy material. Carbon material for sodium anode storage can be divided into natural graphite, graphene, soft carbon materials and hard carbon materials. This review aims to introduce the definition, problems and solutions of carbon materials, which has significant influence on modification of carbon mate-rials and applications in sodium ion batteries.
Key words:  sodium ion battery    carbon-based material    anode
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB322  
基金资助: *国家自然科学基金(51672165)
作者简介:  黄剑锋:男,1970年生,博士,教授,博士研究生导师,研究方向为功能薄膜及涂层材料、陶瓷材料、纳米材料、复合材料等 E-mail:huangjfsust@126.com
引用本文:    
黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷. 钠离子电池碳基负极材料的研究进展*[J]. 材料导报, 2017, 31(21): 19-23.
HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries. Materials Reports, 2017, 31(21): 19-23.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.003  或          https://www.mater-rep.com/CN/Y2017/V31/I21/19
1 Jian Z L. Research on electrode material of new energy storage battery[D]. Wuhan:Wuhan University of Technology, 2012(in Chinese).
简泽浪. 新型储能电池电极材料研究[D].武汉:武汉理工大学,2012.
2 He H N, Wang H Y, Tang Y G, et al. Negative electrode material for sodium ion battery[J]. Prog Chem, 2014(4):572(in Chinese).
何菡娜, 王海燕, 唐有根,等. 钠离子电池负极材料[J]. 化学进展, 2014(4):572.
3 Evarts E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015,526(7575):93.
4 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015,7(1):19.
5 Ye F P, Wang L, Lian F, et al. Research progress of sodium ion battery[J]. Prog Chem, 2013(8):1789(in Chinese).
叶飞鹏, 王莉, 连芳,等. 钠离子电池研究进展[J]. 化工进展, 2013(8):1789.
6 Li H, Wu C, Wu F, et al. Sodium ion batteries: A new option for energy storage batteries[J]. Acta Chim Sin, 2014,72(1):21(in Chinese).
李慧, 吴川, 吴锋,等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014,72(1):21.
7 Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013,23(8):947.
8 Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. Acs Nano, 2013,7(12):11004.
9 Baggetto L, Hah H Y, Jumas J C, et al. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119 Sn and 121 Sb M?ssbauer spectroscopies[J]. J Power Sources, 2014,267(267):329.
10Lu Y C, Ma C, Alvarado J, et al. Electrochemical properties of tin oxide anodes for sodium-ion batteries[J]. J Power Sources, 2011,17(4):403.
11Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chem Mater, 2011,23(18):4109.
12Jernej B, Froebe A, Ajhler T, et al. Conversion reactions for sodium-ion batteries[J]. Phys Chem Chem Phys Pccp, 2013,15(38):15876.
13Yin J, Qi L, Wang H. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors[J]. ACS Appl Mater Interfaces, 2012,4(5):2762.
14Kim H, Hong J, Park Y, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv Funct Mater, 2015,25(4):534.
15Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. J Power Sources, 2015,293:626.
16Ji L, Meduri P, Agubra V, et al. Graphene-based nanocomposites for energy storage[J]. Adv Energy Mater, 2016,6(16):1502159.
17Choe J H, Kim N R, Lee M E, et al. Flexible graphene stacks for sodium-ion storage[J]. Chemelectrochem, 2017,4:716.
18Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J]. Adv Energy Mater, 2014,4(8):1079.
19Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental Sci, 2011,4(9):3342.
20Ling C, Mizuno F. Boron-doped graphene as a promising anode for Na-ion batteries[J]. Phys Chem Chem Phys, 2014,16(22):10419.
21Choi S H, Ko Y N, Lee J K, et al. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties[J]. Adv Funct Mater, 2015,25(12):1780.
22Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nat Commun, 2014,5:4033.
23Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Lett, 2015,16(1):543.
24Jia X P, Chen M. Research progress of electrode materials for sodium ion batteries[J]. J China Academy of Electronic Science, 2012,7(6):581(in Chinese).
贾旭平, 陈梅. 钠离子电池电极材料研究进展[J]. 中国电子科学研究院学报, 2012,7(6):581.
25Jian Z, Bommier C, Luo L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chem Mater, 2017,29(5):2314.
26Miao Y, Zong J, Liu X. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries[J]. Mater Lett, 2017,188:355.
27Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling perfor-mance[J]. J Mater Chem A, 2016,4(17):6472.
28Luo W, Jian Z, Xing Z, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. Acs Central Sci, 2015,1(9):516.
29Pan H L, Hu Y S, Li H, et al. Research progress of electrode material structure of room temperature sodium ion energy storage battery[J]. Chinese J Sci Chem, 2014(8):1269(in Chinese).
潘慧霖, 胡勇胜, 李泓,等. 室温钠离子储能电池电极材料结构研究进展[J]. 中国科学化学, 2014(8):1269.
30Lotfabad E M, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. Acs Nano, 2014,8(7):7115.
31Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Appl Mater Interfaces, 2015,7(9):5598.
32Xiao L, Cao Y, Henderson W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2015,19:279.
33Prabakar S J R, Jeong J, Pyo M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries[J]. Electrochimica Acta, 2015,161:23.
34Tang K, Fu L, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv Energy Mater, 2012,2(7):873.
35Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015,6:7221.
36Wang Z, Long Q, Yuan L, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013,55(2):328.
37Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. Chemsuschem, 2013,6(1):56.
[1] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[2] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[3] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[4] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[5] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[6] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[7] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[8] 王环江, 杨启亮, 张雨晨, 徐磊, 刘娟, 任嗣利. 原位接枝纳米炭黑水包油型破乳剂制备与性能评价[J]. 材料导报, 2023, 37(4): 21070242-6.
[9] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[10] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[11] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[12] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[13] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[14] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[15] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed