Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1195-1200    https://doi.org/10.11896/cldb.19110041
  |
富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂
杜洪方,王珂,何松,杨凯,艾伟,黄维
西北工业大学柔性电子研究院,西安 710072
Defect-rich Crystalline WSe2 Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction
DU Hongfang,WANG Ke,HE Song,YANG Kai,AI Wei,HUANG Wei
Institute of Flexible Electronics (IFE),Northwestern Polytechnical University,Xi'an 710072,China
下载:  全 文 ( PDF ) ( 9414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

     氢是高效的清洁能源,在应对全球能源危机和环境污染方面具有重要作用。电解水制氢是通过消耗可再生的电能(水电、光电、风电等)和储量丰富的水资源以获得氢气,该方法制氢颇具应用前景。然而,电解水过程中的析氢反应(HER)动力学迟缓、过电位高,导致制氢能耗较大。为提升析氢反应速率,需在电解水设备中引入贵金属作为催化剂,这进一步增加了制氢成本。开发高效低成本的析氢催化剂对电解水制氢的规模化应用至关重要。过渡金属硫属化合物(TMDs)因具有独特的层状结构和较低的氢原子吸附自由能,表现出良好的析氢催化活性,有望成为贵金属催化剂的替代品。近年来,MoS2WS2TiS2TaS2MoSe2WSe2TMDs材料被广泛用于催化析氢反应。TMDs的边缘位点被认为是其催化活性中心,且材料的催化性能与边缘位点数成正比。研究表明,通过缺陷调控增加边缘位点数是提升TMDs催化活性的不二法门。液相加工及其他低温合成法是目前制备富缺陷TMDs析氢催化剂的有效手段,然而该条件下得到的材料结晶性差、易发生电化学腐蚀、析氢稳定性低。高温处理可合成高结晶性的TMDs,具有较好的电化学稳定性。但高温结晶会使材料比表面积减小、缺陷和边缘位点数减少,造成催化活性不佳。采用化学/电化学剥离晶态TMDs样品,可在室温条件下制备富缺陷晶态TMDs析氢催化剂。然而,此方法受限于易燃溶剂的使用,且制备过程繁琐,难以实现规模化生产。因此,富缺陷晶态TMDs的制备,是高效析氢催化剂领域的研究重点和难点。

      在已报道的TMDs中,WSe2因带隙小(1.6 eV)、导电性好而备受关注,引发了微纳WSe2催化剂的研究热潮。其中,片状WSe2有利于材料活性位点与电解液直接接触,通常表现出更优异的析氢催化活性。类似其他TMDs材料,富缺陷晶态WSe2纳米片的制备,目前仍难以实现。本工作以WO3Se粉为原料,先在高温条件下合成高结晶度WSe2,再经超声剥离得到晶态的WSe2纳米片。在随后的长时间超声作用下,晶态WSe2纳米片表面会进一步产生许多纳米级的岛状颗粒,得到富缺陷晶态WSe2纳米片材料。选区衍射分析表明,岛状颗粒的引入使WSe2纳米片新增了多晶衍射环。同时,材料的BET比表面积高达105.2 m2·g-1,且具有更宽的孔径分布和更大的孔体积。在三电极条件下,以0.5 mol/L H2SO4为电解液,富缺陷晶态WSe2纳米片在10 mA·cm-2时的过电位仅为277 mV,远低于未剥离的WSe2材料(385 mV)。此外,富缺陷晶态WSe2纳米片的Tafel斜率(58 mV·dec-1)也明显低于剥离前的WSe2(81 mV·dec-1)催化剂。虽然富缺陷晶态WSe2纳米片的析氢催化活性与商用Pt/C (20%)贵金属材料相比仍有一定差距,但其成本较低,在大规模电解水制氢产业中仍有重要应用价值。交流阻抗测试进一步表明,富缺陷晶态WSe2纳米片具有更低的电荷转移电阻,可有效提升析氢反应的电极动力学过程。长时间电解水析氢测试表明,富缺陷晶态WSe2纳米片不仅具有高的析氢催化活性,还具有良好的电化学稳定性。富缺陷晶态WSe2纳米片卓越的电化学性能主要得益于以下两点:一方面,超声剥离减小了催化剂的尺寸、增加了比表面积、拓宽了孔径分布,形成了富缺陷的WSe2结构;另一方面,较高的结晶性使材料能够抵御电化学腐蚀,在析氢反应中表现出良好的稳定性

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜洪方
王珂
何松
杨凯
艾伟
黄维
关键词:  过渡金属硫族化合物  硒化钨纳米片  超声辅助剥离  电催化  电解水  产氢  析氢反应    
Abstract: The edges of layered transition metal dichalcogenides (TMDs) are recognized as the active sites for electrocatalytic hydrogen evolution, therefore considerable efforts have been devoted to increasing the edge density of TMDs. Given that defect-enriched TMDs are synthesized at mild conditions, their low crystallinity normally results in poor electrochemical stability. Although high-temperature processing is efficient to achieve highly crystalline TMDs, which in turn leads to low electrocatalytic activity due to the loss of reactive defects and edge sites. In this work, defect-enriched WSe2 with high crystallinity was synthesized via a long-term ultrasonic treatment of crystalline WSe2 plates in ethanol. Few-layered WSe2 nanosheets (NSs) were firstly obtained by ultrasonication-assisted exfoliation of WSe2 plates, while island-like domains were subsequently formed under durable ultrasonication. The resultant defect-rich crystalline WSe2 NSs possessing large specific surface area, abundant active sites and high crystallinity exhibit superior electrocatalytic performance for hydrogen evolution reaction.
Key words:  transition metal dichalcogenides    WSe2 nanosheets    ultrasonic assisted exfoliation    electrocatalysis    water electrolysis    hydrogen production    hydrogen evolution reaction
               出版日期:  2020-01-10      发布日期:  2020-01-15
ZTFLH:  O646  
通讯作者:  iamwai@nwpu.edu.cn; iamwhuang@nwpu.edu.cn   
引用本文:    
杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
DU Hongfang, WANG Ke, HE Song, YANG Kai, AI Wei, HUANG Wei. Defect-rich Crystalline WSe2 Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Materials Reports, 2020, 34(1): 1195-1200.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110041  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1195
1 Zang Y, Niu S, Wu Y, et al. Nature Communications, 2019, 10(1), 1217.
2 Voiry D, Yang J, Chhowalla M. Advanced Materials, 2016, 28(29), 6197.
3 Shi Y, Zhang B. Chemical Society Reviews, 2016, 45(6), 1529.
4 Lu Q, Yu Y, Ma Q, et al. Advanced Materials, 2016, 28(10), 1917.
5 Jaramillo T F, Jørgensen K P, Bonde J, et al. Science, 2007, 317(5834), 100.
6 Kibsgaard J, Chen Z, Reinecke B N, et al. Nature Materials, 2012, 11, 963.
7 Tsai C, Chan K, Abild-Pedersen F, et al. Physical Chemistry Chemical Physics, 2014, 16(26), 13156.
8 Xie J, Zhang H, Li S, et al. Advanced Materials, 2013, 25(40), 5807.
9 Henckel D A, Lenz O M, Krishnan K M, et al. Nano Letters, 2018, 18(4), 2329.
10 Henckel D A, Lenz O, Cossairt B M. ACS Catalysis, 2017, 7(4), 2815.
11 Ji Q, Zhang Y, Shi J, et al. Advanced Materials, 2016, 28(29), 6207.
12 Eng A Y S, Ambrosi A, Sofer Z, et al. ACS Nano, 2014, 8(12), 12185.
13 Wang H, Lu Z, Kong D, et al. ACS Nano, 2014, 8(5), 4940.
14 Antunez P D, Webber D H, Brutchey R L. Chemistry of Materials, 2013, 25(12), 2385.
15 Wang X, Chen Y, Zheng B, et al. Journal of Alloys and Compounds, 2017, 691(698.
16 Li H, Zou J, Xie S, et al. Journal of Alloys and Compounds, 2017, 725(884.
17 Liang K, Yan Y, Guo L, et al. ACS Energy Letters, 2017, 2(6), 1315.
18 Velazquez J M, Saadi F H, Pieterick A P, et al. Journal of Electroanaly-tical Chemistry, 2014, 716, 45.
19 Wang H, Kong D, Johanes P, et al. Nano Letters, 2013, 13(7), 3426.
20 Li H, Zou J, Xie S, et al. Applied Surface Science, 2017, 425, 622.
21 Mazánek V, Mayorga-Martinez C C, Bouša D, et al. Nanoscale, 2018, 10(48), 23149.
22 Zhou H, Yu F, Sun J, et al. Nano Letters, 2016, 16(12), 7604.
23 Wang X, Chen Y, Zheng B, et al. Electrochimica Acta, 2016, 222,1293.
24 Meiron O E, Kuraganti V, Hod I, et al. Nanoscale, 2017, 9(37), 13998.
25 Gong Q, Cheng L, Liu C, et al. ACS Catalysis, 2015, 5(4), 2213.
26 Zou M, Chen J, Xiao L, et al. Journal of Materials Chemistry A, 2015, 3(35), 18090.
27 Seo S, Kim S, Choi H, et al. Advanced Science, 2019, 6(13), 1900301.
28 Vikraman D, Hussain S, Truong L, et al. Applied Surface Science, 2019, 480,611.
29 Zhang G, Zheng X, Xu Q, et al. Journal of Materials Chemistry A, 2018, 6(11), 4793.
30 Xu S, Li D, Wu P. Advanced Functional Materials, 2015, 25(7), 1127.
31 Wang X, Chen Y, Qi F, et al. Chemical Communications, 2016, 72,74.
32 Cho J S, Park S K, Jeon K M, et al. Applied Surface Science, 2018, 459,309.
33 Liu Z, Zhao H, Li N, et al. Inorganic Chemistry Frontiers, 2016, 3(2), 313.
34 Li J, Liu P, Qu Y, et al. International Journal of Hydrogen Energy, 2018, 43(5), 2601.
35 Huang Y, Ma Z, Hu Y, et al. RSC Advances, 2016, 6(57), 51725.
36 Qian J, Li Z, Guo X, et al. Industrial & Engineering Chemistry Research, 2018, 57(2), 483.
37 Sun Y, Zhang X, Mao B, et al. Chemical Communications, 2016, 52(99), 14266.
38 Yu X, Prévot M S, Guijarro N, et al. Nature Communications, 2015, 6(1), 7596.
39 Wu Z, Fang B, Wang Z, et al. ACS Catalysis, 2013, 3(9), 2101.
40 Xu K, Wang F, Wang Z, et al. ACS Nano, 2014, 8(8), 8468.
41 Yin X L, Liu J, Jiang W J, et al. Chemical Communications, 2015, 51(72), 13842.
42 Zou M, Zhang J, Zhu H, et al. Journal of Materials Chemistry A, 2015, 3(23), 12149.
43 Liu J, Zeng M, Wang L, et al. Small, 2016, 12(41), 5741.
[1] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[2] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[3] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[4] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[5] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[6] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[7] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[8] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[9] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[10] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[11] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[12] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[13] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[14] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[15] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed