Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 623-626    
  高分子与聚合物基复合材料 |
相变微胶囊悬浮液中颗粒润湿性对导热系数的影响
仇中柱1, 李晟南1, 魏丽东2, 秦承芳1, 姚远1, 姜未汀1, 郑莆燕1, 张涛1
1 上海电力学院能源与机械工程学院,上海 200090;
2 上海博阳新能源科技股份有限公司,上海 201600
Effect of Particle Wettability on Thermal Conductivity of Microencapsulated Phase Change Suspension(MPCS)
QIU Zhongzhu1, LI Shengnan1, WEI Lidong2, QIN Chengfang1, YAO Yuan1, JIANG Weiting1, ZHENG Puyan1,ZHANG Tao1
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090;
2 Shanghai BOYON New Energy Science Technology CO., LTD., Shanghai 201600
下载:  全 文 ( PDF ) ( 1674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作的目的是通过实验研究相变微胶囊悬浮液中颗粒润湿性对悬浮液导热系数的影响。主要研究内容为:(1)实验研究了十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)两种不同种类表面活性剂及表面活性剂加入量对几种常用颗粒壁材润湿性(接触角)的影响;(2)借助Hot Disk 2500s型热物性分析仪测试常用质量分数为10%的相变微胶囊悬浮液静态导热系数,观察导热系数与接触角的关系。结果表明,随着表面活性剂质量分数的增加,材料与溶液的接触角越来越小,润湿性得到改善;在小质量浓度范围(0%~0.05%)内,CTAB的改性效果比SDS的改性效果好;当表面活性剂的添加量达到0.05%后,SDS的改性效果比CTAB的改性效果好;随着润湿性的改善(接触角的减小),无论是Maxwell模型理论值还是实验测试值,导热系数都有升高的趋势,实验测试值升高幅度更大;在接触角为45~95°范围内,导热系数的理论值与实验值吻合较好,接触角小于45°时,导热系数的测量值与实验值差距较大,所以Maxwell模型只在接触角45~95°范围内能较好地表示该相变微胶囊悬浮液的导热系数。接触角小于45°时,Maxwell模型需要进行修正,并给出了修正系数A的值,证实了湿润热阻的假设。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇中柱
李晟南
魏丽东
秦承芳
姚远
姜未汀
郑莆燕
张涛
关键词:  相变微胶囊悬浮液  润湿性  导热系数  修正系数    
Abstract: The effect of particle wettability on thermal conductivity of microencapsulated phase change suspension was studied experimentally. The wettability of the MPCS, characterized by contact angle between solid particles and carrying fluid, was modified by two selected surfactants, i.e., cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate(SDS) combining changing their concentration in the suspensions. Meanwhile, the Hot Disk 2500s thermal analyzer was applied to test the static coefficient of thermal conductivity of the microencapsulated phase change suspension(the mass fraction is 10wt%) and obtain the relation between the thermal conductivity and contact angle. The conclusion are as follows:(i)when the additive amount of surfactants falls into the range of 0%—0.05%, the effect of the CTAB is more significant than SDS. When the mass fraction of surfactants reaches 0.05%, the effect of CTAB and SDS in influencing contact angle is opposite. (ii)the decrease in the contact angle leads to the growth in thermal conductivity for both Maxwell model’s theoretical value and experimental results. When contact angle falls into the range of 45—95°, the Maxwell model’s theoretical results of the thermal conductivity can match experimental value very well, but inversely when the contact angle is smaller than 45°, there is a big gap between the two results. To remove this gap a correction factor “A” which is associated with contact angle is proposed.
Key words:  microencapsulated phase change suspension    wettability    thermal conductivity    correction factor
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TK124  
  TQ174  
基金资助: 欧盟委员会第七框架协议玛丽居里国际人才引进项目 (FP7-PEOPLE-2011-IIF-298093); 上海自然科学基金 (17ZR1411300); 上海市科委重点科技攻关项目(17DZ1201500)
通讯作者:  qiuzhongzhu@shiep.edu.cn   
作者简介:  仇中柱,教授,1969年生,2002年获得同济大学工学博士学位。主要从事可再生能源利用与节能技术研究。
引用本文:    
仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
QIU Zhongzhu, LI Shengnan, WEI Lidong, QIN Chengfang, YAO Yuan, JIANG Weiting, ZHENG Puyan,ZHANG Tao. Effect of Particle Wettability on Thermal Conductivity of Microencapsulated Phase Change Suspension(MPCS). Materials Reports, 2019, 33(Z2): 623-626.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/623
1 Alva G, Lin Y X,Fang G Y,et al. Energy,2018,144,341.
2 Wei G, Wang G, Xu C, et al. Renewable and Sustainable Energy Reviews,2017:S1364032117309188.
3 Soni V, Kumar A, Jain V K. Renewable Energy,2018,127,587.
4 乔俊霞,郭建华,朱智鹏.中南大学学报(自然科学版),2018,49(3),553.
5 Charunkyakorn P, Sengupta S, Roy S K. International Journal of Heat and Mass Transfer,1991,34,819.
6 Ahuja A S. Journal of Applied Physics,1975,46(8),3408.
7 Zhang Y, Faghri A. Journal of Thermophys and Heat Transfer,1995,9,727.
8 Huang L, Petermann M, Doetsch C. Energy,2009,34,1145.
9 Shannaq R A, Farid M. Solar Energy Materials & Solar Cells,2015,132,311.
10 Yamagishi Y, Sugeno T, Ishige T. In:Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington,1996,pp.48.
11 Gu T R, Zhu B Y, Li W L, et al. Surface chemistry, Science Press,China,1994.
12 Young T. Philosophical Transactions of the Royal Society of Londen,1805,95,65.
13 Zhang J, Li H, Xiao X Y. Minerals Resources and Geology,2003,1(17),87.
14 Fan Y F, Zhang X X, Wang X C, et al. Thermochim Acta,2004,413,1.
15 Su J, Huang Z, Ren L. Colliod and Polymer Science,2007,285(14),1581.
16 Li W, Zhang X X, Wang X C, et al. Materials Chemistry and Physics,2007,106(2-3),437.
17 Zhang X, Fan Y, Tao X,et al. Journal of Colloid and Interface Science,2005,280(2),373.
18 Zhang X, Tao X M, Yick K L, et al. Colloid and Polymer Science,2004,282(4),330.
19 Alkan C, Sari A, Karaipekli A, et al. Solar Energy Materials and Solar Cells,2009,93(1),143.
20 Inaba H, Kim M J, Horibe A. ASME Journal of Heat Transfer,2004,126(4),558.
21 Ai Y F, Jin Y, Sun J,et al.e-Polymers,2007,98(1-9),68.
22 Wang X C, Niu J L, Li Y, et al. AIChE Journal,2008,54(4),1110.
23 Wang X C, Niu J L, Li Y,et al. International Journal of Heat and Mass Transfer,2007,50(13-14),2480.
24 Zhang S, Niu J L. Solar Energy Mater Solar Cells,2010,94(6),1038.
25 Alvarado J L, Marsh C, Sohn C, et al. Journal of Thermal Analysis & Calorimetry,2006,86(2),505.
26 Chen L, Wang T, Zhao Y, et al. Energy Conversion and Management,2014,79,317.
27 Delgado M, La’zaro A, Mazo J, et al. Applied Thermal Engineering,2012,36,370.
28 Zhang G H, Zhao C Y. Renewable Energy,2011,36(11),2959.
29 Maxwell J C. A treatise on electricity and magnetism, Oxford University Press, England,1892.
30 Miljkovic N, Enright R, Wang E N. In: Proceedings of the ASME 2012 3rd.Georgia,2012,pp.122.
31 Yu W, Choi S U S. Journal of Nanoparticle Research,2003,5(1-2),167.
[1] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[2] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[3] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[4] 张贤琳, 王晓琳, 马建威, 李宝娥, 李海鹏, 刘世敏, 梁春永, 王洪水. 钛表面微弧氧化结构和成分对其润湿性的影响[J]. 材料导报, 2019, 33(24): 4035-4039.
[5] 王博,朱孝钦,胡劲,常静华,陈洋,史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[6] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[9] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[10] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[11] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[12] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[13] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[14] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[15] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed