Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 343-347    
  金属与金属基复合材料 |
医用金属材料表面自身纳米化研究进展
曾德鹏1,2, 余森2, 王岚1,2, 于振涛2, 刘印1,2, 盖晋阳1,2, 代晓军2,3
1 东北大学材料科学与工程学院,沈阳 110004;
2 西北有色金属研究院,西安 710016;
3 西安建筑科技大学冶金工程学院,西安 710055
Research Progress on Surface Self-nanocrystallization of Medical Metal Materials
ZENG Depeng1,2, YU Sen2,WANG Lan1,2, YU Zhentao2, LIU Yin1,2, GAI Jinyang1,2, DAI Xiaojun2,3
1 Institution of Materials Science and Engineering, Northeastern University, Shenyang 110004;
2 Northwest Institute of Nonferrous Metals Research, Xi’an 710016;
3 Institution of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 2238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 表面纳米化是提高医用金属材料表面耐磨性能、力学性能的有效手段,并可改善医用金属材料的生物学性能。本文介绍了滑动摩擦处理(SFT)、表面机械研磨处理(SMAT)、严重喷丸(SSP)三种常用医用金属材料表面纳米晶制备方法的原理和技术方法,并分别综述了上述三种表面纳米技术在医用金属材料领域的研究进展,重点阐述了表面纳米化医用金属材料的力学性能和生物学性能变化,最后介绍了滑动摩擦处理(SFT)、表面机械研磨处理(SMAT)、严重喷丸(SSP)三种表面纳米化技术目前存在的不足和未来研究方向,指出具有适宜纳米层深度、广泛的适应能力和较高的纳米化效率是表面纳米化技术的重要研究方向之一,同时表面纳米化制备工艺参数以及材料的组织、结构和性能对纳米化行为的影响,以及表面纳米化医用金属材料物化性能和生物学性能的变化规律及其微观机理还需要进一步的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾德鹏
余森
王岚
于振涛
刘印
盖晋阳
代晓军
关键词:  表面纳米化  滑动摩擦处理  机械研磨处理  严重喷丸处理  耐腐蚀性  生物相容性    
Abstract: Nano-surface is an effective means to improve the wear resistance and mechanical properties of medical metal materials, as well as the biological properties of medical metal materials. In this paper, introducing the principles and technical methods of three common preparing nanocrystals on the surface of medical metal materials, namely, sliding friction treatment (SFT), surface mechanical attrition treatment (SMAT) and severe shot-peening (SSP). and the research progress of the above three kinds of surface nano technology in the field of medical metallic mate-rials is reviewed respectively. the changes of mechanical properties and biological properties of the surface nanomaterials for medical use were emphatically described, Finally, introducing the current shortcomings and future research directions of the three surface nano technology, sliding friction treatment (SFT), surface mechanical attrition treatment (SMAT) and severe shot-peening (SSP). Pointing out that with appropriate nano layer depth, wide adaptability and high efficiency of nanocrystallization is one of the important research direction of surface nano technology. At the same time, the influence of surface nano preparation process parameters and the tissue of materia on the structure and properties of nano beha-vior, as well as the change rule and its microcosmic mechanism of surface nanocrystallization with metal material physical, chemical properties and biological properties need further research.
Key words:  surface nanocrystallization    sliding friction treatment    surface mechanical attrition treatment    severe shot-peening    corrosion resis-tance    biocompatibility
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG146.3  
  R318  
基金资助: 陕西省创新人才推进计划-青年科技新星项目(2018KJXX-026);陕西省重点科技创新团队(2016KCT-30);陕西省国际合作基地项目(2017GHJD-014)
通讯作者:  yzt@c-nin.com   
作者简介:  曾德鹏,现为东北大学材料学院的硕士研究生,在于振涛教授的指导下进行课题研究,课题关于通过滑动摩擦+微弧氧化复合工艺对钛合金进行表面改性,提高力学性能与生物学性能。
于振涛,从1987年一直在西北有色金属研究所工作,同时兼任东北大学和陕西科技大学兼职硕士生导师。历任助理工程师、工程师、高级工程师、教授级高级工程师。主要研究方向包括钛、镁等及其合金的新材料的加工和表面改性等,包括合金设计、熔炼和加工、微观结构和组织性能以及工程应用研究等。已经承担并参与国际、国家或者其他等级的40多个科学项目,获得国家或部委等级11项,并申请了80项国家发明专利,自1998年以来已发表了200多篇论文。最近开展了研发新型生物医用Ti、Mg、Zn合金材料等及其产品,是中国生物材料学会常务委员会委员和其他材料委员会的成员。
引用本文:    
曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
ZENG Depeng, YU Sen,WANG Lan, YU Zhentao, LIU Yin, GAI Jinyang, DAI Xiaojun. Research Progress on Surface Self-nanocrystallization of Medical Metal Materials. Materials Reports, 2019, 33(Z2): 343-347.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/343
1 Ong A, Wong K L, Lai M, et al. The Journal of Bone and Joint Surgery,2002,84-A(5),786.
2 Jiranek W A, Whiddon D R, Johnstone W T. Clinical Orthopaedics and Related Research,2004,418,172.
3 Lu K,Lu J. Journal of Materials Science Technology,1999,15(3),193.
4 Lu K,Lu J. Materials Science & Engineering A,2004,375,38.
5 Liu X, Chu P K, Ding C. Materials Science and Engineering R,2010,70(3-6),275.
6 Webster T J, Ejiofor J U. Biomaterials,2004,25(19),4731.
7 Price R L, Waid M C, Haberstroh K M, et al. Biomaterials,2003,24(11),1877.
8 Webster T J, Smith T A. Journal of Biomedical Materials Research Part A,2010,74A(4),677.
9 Manjubala I, Scheler S, Bössert J, et al. Acta Biomaterialia,2006,2(1),75.
10 霍望图,张于胜,张伟,等.中国专利,ZL2017106108259,2017.
11 董付超.纯钽、纯铜表面纳米化微观结构及力学行为研究.博士学位论文,东北大学.
12 Huo W T, Zhang W, Lu J W,et al. Journal of Alloys and Compounds,2017,720,324.
13 Cao H, Huo W, Ma S, et al. Materials,2018,11(7),1232.
14 Xiong Y, Hu Q, Song R, et al. Materials Science & Engineering C Materials for Biological Applications,2017,75,1299.
15 Wen L, Wang Y, Zhou Y, et al. Corrosion Science,2011,53(1),473.
16 Gheytani M, Bagheri H R, Masiha H R, et al. Surface Engineering,2014,30(4),244.
17 Jiang J, Zhou Q, Yu J, et al. Surface & Coatings Technology,2013,216(7),259.
18 Lu J, Zhang Y, Huo W, et al. Applied Surface Science,2018,434,63.
19 Jayaraj J, Ravi Shankar A, Kamachi Mudali U. Electrochimica Acta,2012,85(1),210.
20 Huo W T, Zhao L Z, Yu S, et al. Scientific Reports,2017,7,40868.
21 Saldaña L, MéndezVilas A, Jiang L, et al. Biomaterials,2007,28(30),4343.
22 Yao Z Q, Ivanisenko Y, Diemant T, et al. Acta Biomaterialia,2010,6(7),2816.
23 Tong W P, Tao N R, Wang Z B, et al. Science,2003,299(5607),686.
24 Jin L, Cui W F, Song X, et al. Transactions of Nonferrous Metals Society of China,2014,24(8),2529.
25 Jelliti S, Richard C, Retraint D, et al. S urface and Coatings Technology,2013,224,82.
26 金磊,崔文芳,宋秀,等.稀有金属材料与工程,2014(S1),80.
27 Bahl S, Shreyas P, Trishul M A, et al. Nanoscale,2015,7(17),7704.
28 黄润,张兰,黄雷,等.中国表面工程,2017(5),81.
29 Bahl S, Aleti B T, Suwas S, et al. Materials & Design,2018,144,169.
30 Bagherifard S, Hickey D J, Luca A C D, et al. Biomaterials,2015,73,185.
31 Bagherifard S, Hickey D J, Stanislava Fintová, et al. Acta Biomaterialia,2017,66,93.
32 Liu C, Zheng H, Gu X, et al. Journal of Alloys and Compounds,2019,770,500.
33 Ahmed A A, Mhaede M, Basha M, et al. Surface and Coatings Technology,2015,280,347.
34 Bagherifard S, Slawik S, Fernándezpariente I, et al. Materials & Design,2016,102,68.
35 Sun J, Yao Q T, Zhang Y H, et al. Surface and Coatings Technology,2017,309,382.
36 Huihui C, Wangtu H, Shufang M, et al. Materials,2018,11(7),1232.
37 Wangtu H, Lin X, Lv L, et al. Journal of Materials Chemistry B,2018,6,10.
[1] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[4] 刘世丰,曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
[5] 胡建军, 张雨晴, 郭宁, 杨显, 李晖, 金艳. 感应加热40Cr表面Cr-Al共渗组织及其性能分析[J]. 材料导报, 2019, 33(21): 3552-3555.
[6] 任智炜, 罗兵辉, 郑亚亚, 高阳, 何川. Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响[J]. 材料导报, 2019, 33(18): 3072-3076.
[7] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[8] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[9] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[10] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[11] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[12] 李小兵, 童贤靓, 杨仁贤, 刘燚栋, 万齐法, 梅路遥, 王佳铭. 电刷镀Ni-CNTs/PTFE纳米复合镀层的摩擦磨损与耐腐蚀性能[J]. 《材料导报》期刊社, 2017, 31(6): 66-71.
[13] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[14] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed