Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 348-355    
  金属与金属基复合材料 |
高熵合金抗氧化性能研究现状及展望
杨晓萌, 安子冰, 陈艳辉
北京工业大学固体微结构与性能研究所,北京 100124
Review and Perspective on Oxidation Resistance of High-Entropy Alloys
YANG Xiaomeng, AN Zibing, CHEN Yanhui
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 3156KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金作为一种新型的合金体系表现出良好的力学性能及其他功能特性,在近十几年的发展中出现了一系列力学性能优异的合金体系。3d过渡元素高熵合金即使在低温 (77 K)下也具有良好的断裂韧性,难熔高熵合金在高温下具有远高于高温合金的强度,轻质高熵合金具有极高的比强度。另外,相比于传统合金,高熵合金还具有更多的成分、结构设计空间。
而在实际的工业应用中,不仅需要讨论材料的力学性能,也需要注意材料的耐环境性能,尤其是抗氧化性。近年来,研究者们也意识到高温条件下快速氧化限制了高熵合金的高温应用性。合金元素的添加及其含量是影响高熵合金抗氧化性及应用的关键因素。通过添加适量的抗氧化组元来提高传统合金及高熵合金的抗氧化性是目前研究的主要方法。
目前已经出现了一些兼具优良高温力学性能和抗氧化性的合金体系,如AlCrMoTi-M体系,其中AlCrMoNbTi在1 000 ℃时不仅具备良好的力学性能,还具有优异的抗氧化性能。研究证实在合金中添加Al和Cr元素能够有效地提升高熵合金的抗氧化性能,另外通过形成一些复合氧化物也能为合金提供较好的保护。然而,研究者也发现一些元素的组合将会降低材料抗氧化性能,如含Al合金中添加Ti,含Cr合金中添加Nb都会使本应形成的保护膜失效。
本文介绍了高熵合金基本的氧化行为,总结了目前相关报道的高熵合金中Al、Cr、Si 等关键合金元素和其他常用元素对高熵合金抗氧化性能的影响。通过对目前的数据分析,为平衡高熵合金力学性能与抗氧化性能、腐蚀性能等综合性能的设计提供参考,为高熵合金的工业应用提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晓萌
安子冰
陈艳辉
关键词:  高熵合金  抗氧化性  关键合金元素    
Abstract: High-entropy alloys (HEAs) are newly developed alloys which exhibit better mechanical properties than conventional alloys. After 15 years of development, a series of excellent alloy systems have been developed. 3d transition HEAs have good mechanical properties and fracture toughness under low temperature. Refractory HEAs have a special high temperature strength. Lightweight HEAs have extremely high specific strength compared with conventional light alloys. Compared with traditional alloys, there is a wider space for HEAs design on composition and structure.
It is necessary to pay attention to both the mechanical properties and environmental resistance of the materials, especially the oxidation resis-tance, for practical industrial applications. In recent years, researchers have realized that rapid oxidation under high-temperature conditions limits the application under high temperature of HEAs. The addition of alloying elements and their content are the key factors affecting the corrosion resistance and application of traditional alloys and HEAs. The main method of improving the oxidation resistance of HEAs is by adding an approp-riate amount of antioxidant components, and research is being conducted to improve the oxidation resistance without reducing their mechanical properties too much.
At present, some alloy systems with both high-temperature mechanical properties and oxidation resistance have been developed, such as AlCrMoNbTi, which have good mechanical properties and retain good antioxidation resistance at the same time. It has been confirmed in various HEAs systems that the addition of Al and Cr, which are used as conventional antioxidation elements in various alloys, effectively improve the oxidation resistance. In addition, some composite oxide coatings also exhibit a good protective effect, such as CrTaO4. However, it has also been found that the combination of some elements, such as the addition of Ti in the Al-containing alloy and the addition of Nb in the Cr-containing alloy, will reduce the oxidation performance and invalidate the protective film.
This review will summarize the basic oxidation behavior of HEAs and examine the effects of key alloying elements such as Al, Cr, Si and other conventionally used elements on the oxidation resistance of HEAs in recent works. This work will provide a reference for the design of balanced HEAs mechanics and antioxidation corrosion performance by analyzing the current data as well as provide ideas for the industrial application of HEAs.
Key words:  high-entropy alloy    oxidation resistance    key alloy elements
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG146. 4+18  
基金资助: 国家自然科学基金(91860202)
通讯作者:  yhchen@bjut.edu.cn   
作者简介:  杨晓萌,2017年6月毕业于大连理工大学,获得工学学士学位。现为北京工业大学固体微结构与性能研究所硕士研究生。在陈艳辉副教授指导下进行研究。目前主要研究领域为高熵合金的抗氧化性能。
陈艳辉,北京工业大学副研究员。2008年9月在北京工业大学凝聚态物理专业获得理学博士学位。2008.10—2010.10在北京科技大学新金属材料国家重点实验室进行博士后研究,2010.11—2014.2在爱尔兰圣三一学院(Trinity College Dublin)进行博士后研究,获得爱尔兰政府博士后奖学金资助(IRSCSET)。2014. 3进入北京工业大学固体微结构与性能研究所工作。获得电子显微学会优秀论文奖(2008),科技部优秀论文奖(2009)。近年来在基于电子显微镜原位材料微纳米尺度结构和性能表征及高温合金材料方面有广泛和深入的研究。发表论文60余篇,自2014年回国以来主持国家自然基金一项,北京市自然基金面上项目一项。
引用本文:    
杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望[J]. 材料导报, 2019, 33(Z2): 348-355.
YANG Xiaomeng, AN Zibing, CHEN Yanhui. Review and Perspective on Oxidation Resistance of High-Entropy Alloys. Materials Reports, 2019, 33(Z2): 348-355.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/348
1 Cantor B, Isaac Chang, Knight P, et al. Materials Science and Enginee-ring A,2004,375-377,6.
2 Granberg F, Nordlunde K, Mohammad W U, et al. Physical Review Letters,2016,116(13),135504.
3 Qiu Y,Thomas S, Gibson M A, et al. Corrosion Science,2018,133,386.
4 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia,2011,59(16),6308.
5 Wang X F, Zhang Y, Qiao Y, et al. Intermetallics,2007,15(3),357.
6 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics,2011,19,9.
7 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials,2004,6(5),5.
8 Gludovatz B, Hohenwarter A, Catoor H, et al. Science,2014,345(6201),7.
9 Juan C C, Ysao M H, Tsai C W, et al. Intermetallics,2015,62,8.
10 Couzinié J P, Dirras G. Materials Characterization,2019,147,12.
11 Mao H, Qi X, Cao J, et al. Journal of Iron and Steel Research, International,2017,24,561.
12 Abbasi M, Kim D I, Shim J H, et al. Journal of Alloys and Compounds,2016,658,221.
13 Saber D, Emam I S, Abdel-Karim R. Journal of Alloys and Compounds,2014,719,133.
14 Zou D, Zhou Y, Zhang X, et al. Materials Characterization,2018,136,435.
15 Wei L, Zheng J, Chen L, et al. Corrosion Science,2018,142,79.
16 Pei H, Wen Z, Yue Z. Journal of Alloys and Compounds,2017,704,218.
17 Zhang H, Liu Y, Chen X, et al. Journal of Alloys and Compounds,2017,727,410.
18 Liu C T, Ma J, Sun X F. Journal of Alloys and Compounds,2010,491,522.
19 张华,王乾廷,唐群华,等.腐蚀与防护,2013,34(7),561.
20 Chen L, Zhou Z, Tan Z, et al. Journal of Alloys and Compounds,2018,764,8.
21 Wang S, Chen Z, Zhang P, et al. Vacuum,2019,163,263.
22 Huang P K, Yeh J W, Shun T T, et al. Advanced Engineering Materials,2004,6,74.
23 Daoud H M, ManZoni A M, Volkl R. Advanced Engineering Materials,2015,17(8),8.
24 Chang C H, Titus M S, Yeh J W. Advanced Engineering Materials,2018,20,8.
25 Senkov O N, Senkova S V. Journal of Material Science,2012,47,13.
26 Geng J, Tsakiropoulos P. Intermetallics,2007,15,382.
27 Gorr B, Azim M,Christ H J, et al. Journal of Alloys and Compounds,2015,624,9.
28 Butler T M, Chaput K J. Journal of Alloys and Compounds,2019,787,606.
29 Butler T M, Chaput K J, Dietrich J R. Journal of Alloys and Compounds,2017,729,16.
30 Rao Z, Wang X, Wang Q, et al. Advance Engineering Materials,2017,19(5),1600726.
31 Liu C M, Wang H M, Zhang S Q, et al. Journal of Alloys and Compounds,2014,583,10.
32 Chen X, Sui Y, Qi J, et al. Journal of Material Research,2017,32(11),8.
33 Butler T M,Weaver M L. Journal of Alloys and Compounds,2016,674,16.
34 Butler T M, Alfano J P, Martens R L, et al. The Journal of the Mine-rals, Metals & Materials Society,2015,16(1),14.
35 Chen L, Zhou Z, Tan Z, et al. Journal of Alloys and Compounds,2018,764,845.
36 Dabrowa J, cieslak G, Stygar M, et al. Intermetallics,2017,84,10.
37 Raphela A, Kumaran S, Kumarb K V, et al. Materials Today: Procee-dings,2017,4,195.
38 刘勇,朱景川,赵晓亮,等.稀有金属材料与工程,2018,47(9),2743.
39 Zheng J, Hou X, Wang X B, et al. Journal of Refractory Metals and Hard Materials,2016,54,322.
40 Gorr B, Muller F, Azim M, et al. Oxidation of Metals,2017,88,339.
41 Gorr B, Muller F, Christ H J, et al. Journal of Alloys and Compounds,2016,688,10.
42 Muller F, Gorr B, Christ H J, et al. Materials at High Temperatures,2018,35,168.
43 Zhang P, Li Y, Chen Z, et al. Vacuum,2019,162,20.
44 Kanyane L R, Popoola A P. Results in Physics,2019,12,1754.
45 Jayaraj J, Thirathinpviwat P, Han J, et al. Intermetallics,2018,100,9.
46 Qin Q, Qu J, Hu Y, et al. Metallurgy and Materials,2018,25,1286.
47 Kim Y K, Joo Y A, Kim H S. Intermetallics,2018,98,9.
48 Laplanche G, Volkert U F, Eggeler G, et al. Oxidation of Metals,2016,82,629.
49 王海燕,唐群华,李小军,等.金属热处理,2017.42(12),71.
50 Kai W, Cheng F P, Liao C Y, et al. Materials Chemistry and Physics,2018,210,8.
51 Waseem O A, Lee J, Lee H M, et al. Materials Chemistry and Physics,2018,210,87.
52 王康,陈宇红,鸿业,等.特种铸造及有色合金,2018,38,661.
53 Grewal H S, Sanjiv R M, Arora H S, et al. Advanced Engineering Mate-rials,2017,1700182,5.
54 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia,2013,61(13),4887.
55 Neil Briks, Meier G H, Frederick S. Introduction to the high-temperature oxidation of metals, Cambridge University Press,2006.
56 Kai W, Li C C, Cheng F P, et al. Corrosion Science,2017,121,10.
57 洪丽华,张华,唐群华.稀有金属材料与工程,2015,44(2),5.
58 Zou D, Zhou Y, Zhang X, et al. Materials Characterization,2018,136,9.
59 Han S, Young D J. Oxidation of Metals,2001,55,20.
60 Wild R K. Corrosion Science,1977,17,17.
61 Ranganathan S. Current Science,2003,85(10),3.
62 Zhang S, Guo X. Intermetallics,2015,57,10.
63 Park S J,Seo S M, Yoo Y S, et al. Corrosion Science,2015,90,305.
64 Yang X, Zhang Y, Liaw P K. Procedia Engineering,2012,36,7.
65 He J Y, Liu W H,Wu Y, et al. Acta Materialia,2014,62,9.
66 Zhang C, Zhang F, Chen S, et al. The Journal of the Minerals, Metals & Materials Society,2012,64(7),7.
67 Westbrook J H, Wood D L. Journal of Nuclear Material,1964,12(2),8.
68 Cao T, Shang J, Zhao J, et al. Materials Letters,2016,164,4.
69 Lo K, Chen Y J, Murakami H, et al. Scientidic Report,2019,9(1),7266.
70 张冲,黄标,戴品强.中国表面工程,2016,29(1),7.
71 Holcomb G R, Tylczak J, Carney C. The Journal of the Minerals, Metals & Materials Society,2015,67(10),14.
72 Fu Z Q, Chen W, Fang S, et al. Materials Science & Engineering A,2014,597,8.
73 Gorr B, Mueller F, Christ H J, et al. Journal of Alloys and Compounds,2016,688,10.
74 Greenblatt M, Nair K R, McCarroll W H, et al. Materials Research,1984,19,777.
75 Roberson J A, RApp R A. Transactions of the Metallurgical Society of Aime,1967.239(9),1327.
76 Pfeiler M, Scheu C, Hutter H, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,2009,27(3),554.
77 Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications, ed.,John Wiley,New York,2003.
78 张华.高熵合金的高温氧化与高温腐蚀.硕士学位论文,福州大学,2013.
79 Becker S, Rahmel A, Schoor M, et al. Oxidation of Metals,1992,38,40.
80 Chang Y J,Yeh A C. Journal of Alloys and Compounds,2015,653,7.
[1] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[4] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[5] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[6] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[7] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[8] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[9] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[10] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[11] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[12] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[13] 郭亚雄,刘其斌,尚晓娟,徐鹏,周芳. CoCrFeNi-M系高熵合金的结构与相变[J]. 《材料导报》期刊社, 2018, 32(1): 122-127.
[14] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[15] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed