Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 66-71    https://doi.org/10.11896/j.issn.1005-023X.2017.06.014
  材料研究 |
电刷镀Ni-CNTs/PTFE纳米复合镀层的摩擦磨损与耐腐蚀性能
李小兵1, 童贤靓1, 杨仁贤1, 刘燚栋1, 万齐法1, 梅路遥2, 王佳铭3
1 南昌大学机电工程学院, 南昌 330031;
2 南昌大学材料科学与工程学院, 南昌 330031;

3 南昌大学高等研究院, 南昌 330031
Friction-wear and Corrosion Resistance of Brush Plated
Ni-CNTs/PTFE Nano-composite Coatings
LI Xiaobing1, TONG Xianliang1, YANG Renxian1, LIU Yidong1, WAN Qifa1,
MEI Luyao2, WANG Jiaming3
1 School of Mechanical Engineering, Nanchang University, Nanchang 330031;
2 School of Material Science and Engineering,
Nanchang University, Nanchang 330031;
3 School of Advanced Study, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 2386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再制造工程中很多表面镀层要求具有优异的摩擦磨损与耐腐蚀性能,利用纳米电刷镀技术在45钢基材上制备Ni-CNTs、Ni-CNTs/PTFE、Ni-WC/PTFE-CNTs复合镀层。采用XRD和SEM观察电刷镀复合镀层表面相结构和微观形貌,采用球盘式摩擦磨损试验机测试其在干摩擦条件下的摩擦磨损性能,采用动电位极化曲线研究其在3.5% NaCl溶液中的电化学腐蚀行为。结果表明:Ni-WC/PTFE-CNTs复合镀层耐磨性能最优,其次为Ni-CNTs/PTFE、Ni-CNTs复合镀层,均强于纯镍镀层;当CNTs质量浓度分别为1.5 g/L和1.0 g/L时,Ni-CNTs复合镀层分别表现出最优的摩擦磨损性能和最佳的耐腐蚀性能,Ni-WC/PTFE-CNTs、Ni-CNTs/PTFE复合镀层次之。纯镍镀层和Ni-CNTs复合镀层的磨损机制是粘着磨损,Ni-CNTs/PTFE复合镀层的磨损机制主要是粘着磨损,其次为磨粒磨损,Ni-WC/PTFE-CNTs复合镀层的磨损机制主要是磨粒磨损和接触疲劳磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小兵
童贤靓
杨仁贤
刘燚栋
万齐法
梅路遥
王佳铭
关键词:  镍基电刷镀  CNTs  PTFE  WC  磨损性能  耐腐蚀性    
Abstract: The excellent wear resistance and corrosion resistance are needed for composite coating of remanufacturing parts. The composite coatings of Ni-CNTs, Ni-CNTs/PTFE and Ni-WC/PTFE-CNTs were prepared on 45 steel surfaces with brush pla-ting. The surface morphology and microstructure of coatings were observed by XRD or SEM, and the properties of dry friction and wear were measured by ball on disc wear tester, then the corrosion resistance was tested with potentiodynamic polarization curve in 3.5% NaCl solution. The results showed that the Ni-WC/PTFE-CNTs composite coating had the best wear resistance, and was followed by that of Ni-CNTs/PTFE and Ni-CNTs, which were all better than pure Ni coating. The wear resistance of the Ni-CNTs composite coating with 1.5 g/L was the best. The corrosion resistance of the Ni-CNTs composite coating with 1.0 g/L was the best, and was followed by the wear and corrosion resistance of Ni-WC/PTFE-CNTs, Ni-CNTs/PTFE composite coatings. The worn mechanism of pure Ni coating and Ni-CNTs composite coating were adhesive wear, while the worn mechanism of Ni-CNTs/PTFE composite coating was mainly adhesive wear, and was followed by abrasive wear, and the worn mechanism of Ni-WC/PTFE-CNTs composite coating was mainly abrasive wear and contact fatigue wear.
Key words:  nickel based brush plating    CNTs    PTFE    WC    wear resistance    corrosion resistance
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG178  
基金资助: 江西省自然科学基金(20151BAB206038)
作者简介:  李小兵:男,1979年生,博士,副教授,主要从事表面工程与摩擦学研究,E-mail:lixiaobing@ncu.edu.cn
引用本文:    
李小兵, 童贤靓, 杨仁贤, 刘燚栋, 万齐法, 梅路遥, 王佳铭. 电刷镀Ni-CNTs/PTFE纳米复合镀层的摩擦磨损与耐腐蚀性能[J]. 《材料导报》期刊社, 2017, 31(6): 66-71.
LI Xiaobing, TONG Xianliang, YANG Renxian, LIU Yidong, WAN Qifa,
MEI Luyao, WANG Jiaming. Friction-wear and Corrosion Resistance of Brush Plated
Ni-CNTs/PTFE Nano-composite Coatings. Materials Reports, 2017, 31(6): 66-71.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.014  或          https://www.mater-rep.com/CN/Y2017/V31/I6/66
1 Iijima S. Helical microtubles of graphite carbon[J]. Nature,1991,11(354):56.
2 Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Scien-ce,2008,321(5887):385.
3 Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nat Mater,2011,10(8):569.
4 Duszova A, Dusza J, Tomasek K, et al. Microstructure and properties of carbon nanotube/zirconia composite [J]. J Eur Ceram Soc,2008,28(5):1023.
5 Mazaheri M, Mari D, Hesabi Z R, et al. Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature[J]. Compos Sci Technol,2011,71(7):939.
6 Mazaheri M, Mari D, Schaller R, et al. Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties[J]. J Eur Ceram Soc,2011,31:2691.
7 Lahiri D, Singh V, Keshri A K, et al. Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties[J]. Carbon,2010,48(11):3103.
8 Lahiri D, Ghosh S, Agarwal A. Carbon nanotube reinforced hy-droxyapatite composite for orthopedic application: A review[J]. Mater Sci Eng C,2012,32(7):1727.
9 Zhang H, Guo L J, Song Q, et al. Microstructure and flexural pro-perties of carbon/carbon composite with in-situ grown carbon nanotube as secondary reinforcement[J]. Prog Nat Sci: Mater Int,2013,23(2):157.
10 Kuzumaki T, Miyazawa K, Ichinose H, et al. Processing of carbon nanotubes reinforced aluminum composites [J]. J Mater Res,1998,13(9):2445.
11 Kantesh B, Rao B S, Chen Y, et al. Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposite[J]. J Nanosci Nanotechnol,2008,7(10):3553.
12 Zarebidaki A, Allahkaram S R. Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings [J]. J Alloys Compd,2011,509(5):1836.
13 Suzuki T, Konno T. Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings [J]. Precision Eng,2014,38(3):659.
14 Liu B, Liu L, Liu X J. Effects of carbon nanotubes on the microstructures in Ni-CNT coatings after wear [J]. Nanosci Nanotechnol Lett,2014,6(6):541.
15 Susumu A, Morinobu E, Norio K. Ni-deposited multi-walled carbon nanotubes by electrodeposition [J]. Carbon,2004,42(3):641.
16 Chen X H, Chen C S, Xiao H N, et al. Corrosion behavior of carbon nanotubes-Ni composite coating [J]. Surf Coat Technol,2005,191(2-3):351.
17 Meng Z Q, Xiong Y J, Liu R T, et al. Preparation and self-lubricating mechanism of Ni-P-multi-walled carbon nanotubes composite coating[J]. J Central South University:Science and Technology,2012,43(9):3394(in Chinese).
孟振强, 熊拥军, 刘如铁, 等. Ni-P-多壁碳纳米管复合镀层的制备及自润滑机理[J]. 中南大学学报:自然科学版,2012,43(9):3394.
18 Meng Z Q, Li X B, Xiong Y J, et al. Preparation and tribological performances of Ni-P-multi-walled carbon nanotubes composite coa-tings[J]. Trans Nonferrous Met Soc China,2012,22(11):2719.
19 Tang A G, Wang X L. Research on the Ni-PTFE composite coating prepared by electrophoretic-electrochemical deposition and its tribological behavior [J]. Surf Technol,2015,44(5):67(in Chinese).
唐爱贵,王晓雷.电泳-电沉积Ni-PTFE复合镀层及其摩擦学行为研究[J]. 表面技术,2015,44(5):67.
20 Qian S Q, Wang W, Lin W S, et al. Nano PTFE in Ni composite coatings by high speed jet electrodeposition [J]. Heat Treat Met,2009,34(2):14(in Chinese).
钱士强,王伟,林文松,等.纳米PTFE粒子细化高速电喷镀镍基复合镀层的组织[J].金属热处理,2009,34(2):14.
21 Lin W S, Qian S Q, Xu M M. Wear behavior of electro-brush pla-ting nano-WC/PTFE-Ni composite coatings[J]. Tribology,2007,27(5):442(in Chinese).
林文松, 钱士强, 徐曼曼. Nano-WC/PTFE-Ni复合电刷镀层的磨损性能研究[J]. 摩擦学学报,2007,27(5):442.
22 Li X B, Liu Y D, Ma H, et al. Wear and corrosion resistance of brush planting Ni-WC/PTFE nano-composite coatings[J]. China Surf Eng,2015,28(5):9(in Chinese).
李小兵, 刘燚栋, 马豪, 等. 纳米WC/PTFE镍基复合电刷镀层的摩擦磨损与耐腐蚀性能[J]. 中国表面工程,2015,28(5):9.
23 Zhang G, Li S L, Chen X H, et al. Corrosion behavior of carbon nanotubes Ni composite coating[J]. Chin J Nonferrous Met,2003,13(4):996(in Chinese).
张刚, 李绍禄, 陈小华, 等. 碳纳米管/镍基复合镀层的腐蚀行为[J]. 中国有色金属学报,2003,13(4):996.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[6] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[7] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[8] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[9] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[10] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[11] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[12] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[13] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[14] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[15] 肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed