Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2959-2968    https://doi.org/10.11896/j.issn.1005-023X.2018.17.009
  无机非金属及其复合材料 |
绿色柔性喷墨打印银纳米墨水研究综述
宁洪龙1, 陶瑞强1, 姚日晖1, 陈建秋1, 杨财桂1, 周艺聪1, 蔡炜1, 朱镇南1, 彭俊彪1, 宋永生2
1 华南理工大学材料科学与工程学院,高分子光电材料与器件研究所,发光材料与器件国家重点实验室,广州 510640;
2 广东风华高新科技股份有限公司,肇庆 526060
A Review on Green and Flexible Silver Nano-ink for Inkjet Printing
NING Honglong1, TAO Ruiqiang1, YAO Rihui1, CHEN Jianqiu1, YANG Caigui1, ZHOU Yicong1, CAI Wei1, ZHU Zhennan1, PENG Junbiao1, SONG Yongsheng2
1 State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Guangdong Fenghua Advanced Technology Holding Co., Ltd., Zhaoqing 526060
下载:  全 文 ( PDF ) ( 2456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统导电薄膜的图形化需使用光刻工艺,涉及显影、刻蚀等多个工艺步骤,存在耗时长、器件各功能层构建复杂、成本高昂等不足。喷墨打印作为一种非真空、非接触、无掩膜、低成本、高通量、精准、便捷的桌面型沉积技术,可用于金属导线直接图形化制备,能够节约材料与时间,在柔性大面积电子器件中的应用潜力日益凸显。
   高性能环保导电墨水的开发是喷墨打印柔性电极制备技术最主要的瓶颈之一,其应满足无毒安全、低温烧结、高导电等需求。早期有机材料由于具有易溶液加工特性被选作可打印导体材料,如聚苯胺和PEDOT/PSS,但它们的导电性低,且化学、热、电学性质不稳定。而金墨水价格昂贵,铜墨水易氧化。相比较而言,银墨水具有高导电性、抗氧化性、稳定性以及相对合理的成本等优势,在打印电子器件领域引起了更加广泛的关注,目前已经实现商业化生产。随着电子器件在低成本、低能量消耗、高效率生产与柔性方面的需求日益增长,导电纳米银墨水的配制不仅需要考虑打印电子器件的高性能,更要满足绿色环保与低温烧结的要求。
   近年来,针对环保低温的高导电喷墨打印墨水制备技术,诸多研究者不仅致力于改善墨水体系,开发环保的水性墨水,还关注新型的低温烧结技术。在传统热烧结条件下,以月桂酸为分散剂、硼酸钠为还原剂的银纳米颗粒型墨水在烧结温度为125 ℃时电阻率为6.6 μΩ·cm,而以氨水为络合剂、甲酸为还原剂的无颗粒纯溶液墨水在90 ℃烧结时电阻率为1.6 μΩ·cm。新型烧结技术在一定程度上突破了高性能墨水喷墨打印工艺与低温烧结的限制,目前已使银电极烧结温度降低到100 ℃以下,电阻率低于6 μΩ·cm。
   水性墨水的开发可减少毒性废料的产生,同时若采用多聚电解质作为分散剂,则稳定性更优于有机墨水,利于大规模生产。本文介绍了水性银纳米颗粒(SNPs)悬浮液和有机银复合物(SOC)溶液这两种水性银纳米墨水,比较了不同分散剂、络合剂、还原剂、颗粒聚集方式的墨水体系,总结了适用于柔性印刷的化学烧结、蒸气还原烧结、热水辅助烧结、光还原烧结等新型低温烧结技术。这些新型墨水体系与烧结技术有助于实现导电墨水高性能、高稳定性与柔性的统一,它们的开发和完善将极大促进柔性低温墨水和柔性打印电子器件的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁洪龙
陶瑞强
姚日晖
陈建秋
杨财桂
周艺聪
蔡炜

朱镇南
彭俊彪
宋永生
关键词:  喷墨打印  电极  绿色  柔性  银纳米墨水    
Abstract: The patterning of conductive films in a traditional way involves photolithography process that consists of multiple steps like developing, etching, etc., and thus is time consuming, complex in constructing functional layers of devices, and expensive. Inkjet printing, a non-vacuum, non-contact, mask-free, low-cost, high-flux, precise and convenient desktop deposition technology, can be adopted to directly metallize conductive lines with relatively less materials and time, and shows increasing application potential in the fabrication of flexible and large scale display electronics.
   The development of high-performance and environmental-friendly conductive inks, which require non-toxicity, low-temperature sintering and high conductivity, is one of the main obstacles to fabricating flexible electrodes by inkjet printing. Organic materials, such as polyaniline and PEDOT/PSS, are previously chosen as printable conductive precursors due to its favorable solution processability, but they are poor in conductivity and chemical, thermal and electrical instability. Compared with other conductive materials, silver nanoparticles which are gifted with high conductivity, anti-oxidation, stability and rational price have provoked considerable research interest in the field of printable electrical devices, and have already achieved commercialization. On the other hand, the conti-nuously increasing demands of electronic devices for low cost, low energy consumption, high yield and flexibility exaggerate the significance of both environmental friendliness and low-temperature sintering in the developing of nano-inks besides the high product performance.
   Recently, apart from the optimization of ink system, e.g. developing green and water-soluble inks, researchers also showed passion for novel low-temperature sintering techniques in order to achieve green, low-temperature and high conductivity printable inks. In a traditional thermal sintering condition, the resistivity of 6.6 μΩ·cm can be obtained by sintering a silver nanoparticles (SNPs) ink with Lauric acid as dispersant and NaBH4 as reducing agent at 125 ℃, while the silver-organic complex (SOC) ink with ammonia as complexing agent and HCOOH as reducing agent can achieve the resistivity of 1.6 μΩ·cm by adopting 90 ℃ sintering temperature. The novel sintering techniques are conducive to overcoming the limitations of the inkjet printing process and low temperature sintering (<100 ℃) of high performance (<6 μΩ·cm) inks.
   Aqueous silver ink contributes to the attenuation of toxic waste emissions, and possesses higher stability than organic ink when using polyelectrolyte as dispersion agent, and thus is applicable for mass production. This paper offers an introduction of aqueous SNPs suspension and SOC solution, both of which can serve as aqueous silver ink, gives comparative analysis for the ink systems with different dispersants, complexing agents, reducing agents and aggregation modes, and summarizes the representative novel low-temperature sintering techniques including chemical sintering, vapor reduction sintering, hot-water-assisted sintering and photo-induced reduction sintering. These optimized ink systems and sintering methods can facilitate to impart high performance, high stability and flexibility to conductive inks, and will promote to a large extent the innovation with respect to flexible low-temperature ink pro-ducts and flexible printing electronics.
Key words:  inkjet printing    electrode    green    flexibility    silver nano-ink
               出版日期:  2018-09-10      发布日期:  2018-09-19
ZTFLH:  TG146.3+2  
  TS951.23  
基金资助: 国家重点研发计划(2016YFB0401504);国家自然科学基金(51771074;U1601651);国家重点基础研究发展规划项目计划(973计划)(2015CB655004);广东省自然科学基金(2016A030313459;2017A030310028);广东省科技计划项目(2014B090915004;2015B090914003;2016A040403037;2016B090907001;2016B090906002)
作者简介:  宁洪龙:男,1971年生,教授,博士研究生导师,主要从事新型信息显示材料与器件系统集成研究 E-mail:ninghl@scut.edu.cn; 姚日晖:男,1981年生,副教授,硕士研究生导师,主要从事光电材料与器件、新型显示技术等研究 E-mail:yaorihui@scut.edu.cn
引用本文:    
宁洪龙, 陶瑞强, 姚日晖, 陈建秋, 杨财桂, 周艺聪, 蔡炜, 朱镇南, 彭俊彪, 宋永生. 绿色柔性喷墨打印银纳米墨水研究综述[J]. 材料导报, 2018, 32(17): 2959-2968.
NING Honglong, TAO Ruiqiang, YAO Rihui, CHEN Jianqiu, YANG Caigui, ZHOU Yicong, CAI Wei, ZHU Zhennan, PENG Junbiao, SONG Yongsheng. A Review on Green and Flexible Silver Nano-ink for Inkjet Printing. Materials Reports, 2018, 32(17): 2959-2968.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.009  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2959
1 Ji D, Jiang L, Dong H, et al. “Double exposure method”: A novel photolithographic process to fabricate flexible organic field-effect transistors and circuits[J].ACS Applied Materials & Interfaces,2013,5(7):2316.
2 Ji D, Jiang L, Jiang L, et al. A novel method for photolithographic polymer shadow masking: Toward high-resolution high-performance top-contact organic field effect transistors[J].Chemical Communications,2014,50(61):8328.
3 Yang W, Liu C, Zhang Z, et al. One step synthesis of uniform organic silver ink drawing directly on paper substrates[J].Journal of Materials Chemistry,2012,22(43):23012.
4 Chen C, Dong T, Chang T, et al. 1-Solution-based β-diketonate silver ink for direct printing of highly conductive features on a flexible substrate[J].Journal of Materials Chemistry C,2013,1(33):5161.
5 Nie X, Wang H, Zou J. Inkjet printing of silver citrate conductive ink on PET substrate[J].Applied Surface Science,2012,261:554.
6 Tai Y, Wang Y, Yang Z, et al. Green approach to prepare silver nanoink with potentially high conductivity for printed electronics[J].Surface and Interface Analysis,2011,43(12):1480.
7 Kim I, Lee T, Kim J. A study on the electrical and mechanical pro-perties of printed Ag thin films for flexible device application[J].Journal of Alloys and Compounds,2014,596:158.
8 Chiolerio A, Camarchia V, Quaglia R, et al. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties[J].Journal of Alloys and Compounds,2014,615:S501.
9 Mustonen T, Kordás K, Saukko S, et al. Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites[J].Physica Status Solidi (b),2007,244(11):4336.
10 Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].Nature (Physical Science),1973,241(105):20.
11 Lee J, Lee B, Jeong S, et al. Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering[J].Thin Solid Films,2014,564:264.
12 Ning H, Chen J, Fang Z, et al. Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors[J].Materials,2017,10(1):51.
13 Yang C, Fang Z, Ning H, et al. Amorphous InGaZnO thin film transistor fabricated with printed silver salt ink source/drain electrodes[J].Applied Sciences,2017,7(8):844.
14 van Osch T H J, Perelaer J, de Laat A W M, et al. Inkjet printing of narrow conductive tracks on untreated polymeric substrates[J].Advanced Materials,2008,20(2):343.
15 Jeong S, Song H C, Lee W W, et al. Preparation of aqueous Ag ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film[J].Journal of Applied Physics,2010,108(10):102805.
16 Huang Q, Shen W, Song W. Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates[J].Applied Surface Science,2012,258(19):7384.
17 Tai Y, Yang Z. Facile and scalable preparation of solid silver nano-particles (<10 nm) for flexible electronics[J].ACS Applied Mate-rials & Interfaces,2015,7(31):17104.
18 Lovinger A J. Development of electrical conduction in silver-filled epoxy adhesives[J].The Journal of Adhesion,1979,10(1):1.
19 Perelaer B J, de Laat A W M, Hendriks C E, et al. Inkjet-printed silver tracks: Low temperature curing and thermal stability investigation[J].Journal of Materials Chemistry,2008,18(27):3209.
20 Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121.
21 Wu N, Fu L, Su M, et al. Interaction of fatty acid monolayers with cobalt nanoparticles[J].Nano Letters,2004,4(2):383.
22 Kumar A, Vemula P K, Ajayan P M, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil[J].Nature Mate-rials,2008,7(3):236.
23 Liu Z, Su Y, Varahramyan K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers[J].Thin Solid Films,2005,478(1-2):275.
24 Jahn S F, Blaudeck T, Baumann R R, et al. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands[J].Chemistry of Materials,2010,22(10):3067.
25 Wu J, Hsu S L, Tsai M, et al. Conductive silver patterns via ethy-lene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate[J].Thin Solid Films,2009,517(20):5913.
26 Wu J, Lien-Chung Hsu S, Tsai M, et al. Direct ink-jet printing of silver nitrate-silver nanowire hybrid inks to fabricate silver conductive lines[J].Journal of Materials Chemistry,2012,22(31):11565.
27 Dong Y, Li X, Liu S, et al. Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications[J].Thin Solid Films,2015,589:381.
28 Wu J, Hsu S L, Tsai M, et al. Inkjet printing of low-temperature cured silver patterns by using AgNO3/1-dimethylamino-2-propanol inks on polymer substrates[J].The Journal of Physical Chemistry C,2011,115(22):10940.
29 Walker S B, Lewis J A. Reactive silver inks for patterning high-conductivity features at mild temperatures[J].Journal of the American Chemical Society,2012,134(3):1419.
30 Chen S, Kao Z, Lin J, et al. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures[J].ACS Applied Materials & Interfaces,2012,4(12):7064.
31 Lee K J, Lee Y, Shim I, et al. Direct synthesis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange[J].Journal of Colloid and Interface Science,2006,304(1):92.
32 Stewart I E, Kim M J, Wiley B J. Effect of morphology on the electrical resistivity of silver nanostructure films[J].ACS Applied Materials & Interfaces,2017,9(2):1870.
33 Tao R, Ning H, Fang Z, et al. Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment[J].The Journal of Physical Chemistry C,2017,121(16):8992.
34 Ning H, Tao R, Fang Z, et al. Direct patterning of silver electrodes with 2.4 μm channel length by piezoelectric inkjet printing[J].Journal of Colloid and Interface Science,2017,487:68.
35 Pillai Z S, Kamat P V. 1-What factors control the size and shape of silver nanoparticles in the citrate ion reduction method[J].The Journal of Physical Chemistry B,2004,108(3):945.
36 Wu Y, Li Y, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics[J].Journal of the American Chemical Society,2007,129(7):1862.
37 Vaseem M, Mckerricher G, Shamim A. Robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics[J].ACS Applied Materials & Interfaces,2016,8(1):177.
38 Bhat K S, Ahmad R, Wang Y, et al. Low-temperature sintering of highly conductive silver ink for flexible electronics[J].Journal of Materials Chemistry C,2016,4(36):8522.
39 Tai Y, Yang Z, Li Z. A promising approach to conductive patterns with high efficiency for flexible electronics[J].Applied Surface Science,2011,257(16):7096.
40 Dearden A L, Smith P J, Shin D, et al. A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks[J].Macromolecular Rapid Communications,2005,26(4):315.
41 Dong T Y, Chen W T, Wang C W, et al. One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: Direct spray printing ink to form metallic silver films[J].Physical Chemistry Chemical Physics,2009,11(29):6269.
42 Vaseem M, Lee K M, Hong A, et al. Inkjet printed fractal-connec-ted electrodes with silver nanoparticle ink[J].ACS Applied Materials & Interfaces,2012,4(6):3300.
43 Ning H, Zhou Y, Fang Z, et al. UV-Cured inkjet-printed silver gate electrode with low electrical resistivity[J].Nanoscale Research Letters,2017,2(1):546.
44 Wakuda D, Hatamura M, Suganuma K. Novel method for room temperature sintering of Ag nanoparticle paste in air[J].Chemical Physics Letters,2007,441(4-6):305.
45 Wakuda D, Kim K, Suganuma K. Room-temperature sintering process of Ag nanoparticle paste[J].IEEE Transactions on Components and Packaging Technologies,2009,32(3):627.
46 Magdassi S, Grouchko M, Berezin O, et al. Triggering the sintering of silver nanoparticles at room temperature[J].ACS Nano,2010,4(4):1943.
47 Grouchko M, Kamyshny A, Mihailescu C F, et al. Conductive inks with a “built-in” mechanism that enables sintering at room temperature[J].ACS Nano,2011,5(4):3354.
48 Layani M, Grouchko M, Shemesh S, et al. Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions[J].Journal of Materials Chemistry,2012,22(29):14349.
49 Long Y, Wu J, Wang H, et al. Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers[J].Journal of Materials Chemistry,2011,21(13):4875.
50 Chen C N, Chen C P, Dong T Y, et al. Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature[J].Acta Materialia,2012,60(16):5914.
51 Choi C, Allan-Cole E, Chang C. Room temperature fabrication and patterning of highly conductive silver features using in situ reactive inks by microreactor-assisted printing[J].Journal of Materials Che-mistry C,2015,3(28):7262.
52 Kao Z, Hung Y, Liao Y. Formation of conductive silver films via inkjet reaction system[J].Journal of Materials Chemistry,2011,21(46):11883.
53 Kao Z, Chen S, Lin J, et al. Low temperature synthesis of conductive silver tracks with polymer addition[J].Journal of the Taiwan Institute of Chemical Engineers,2012,43(6):965.
54 Kheawhom S, Foithong K. Comparison of reactive inkjet printing and reactive sintering to fabricate metal conductive patterns[J].International Conference on Flexible & Printed Electronics,2013,52(5):5D.
55 Koga H, Inui T, Miyamoto I, et al. A high-sensitivity printed antenna prepared by rapid low-temperature sintering of silver ink[J].RSC Advances,2016,6(87):84363.
56 Zhai D, Zhang T, Guo J, et al. Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electro-nics[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,424:1.
[1] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[2] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[3] 薛松柏, 王博, 张亮, 龙伟民. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(17): 2813-2830.
[4] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[5] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[6] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[7] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪. 喷墨打印电极在薄膜晶体管中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 742-748.
[10] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[11] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[12] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[13] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[14] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[15] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed