Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22120125-9    https://doi.org/10.11896/cldb.22120125
  高分子与聚合物基复合材料 |
纤维束拉伸件几何尺寸对界面横向拉伸强度影响分析
徐文卓1, 李文晓1,*, 苏钊阳1, 时起珍2
1 同济大学航空航天与力学学院,上海 200092
2 中国航发商用航空发动机有限责任公司,上海 201100
Analysis of the Influence of the Fiber Bundle Stretchers’ Geometric Dimensions on the Transverse Tensile Strength of the Interface
XU Wenzhuo1, LI Wenxiao1,*, SU Zhaoyang1, SHI Qizhen2
1 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2 Aecc Commercial Aircraft Engine Co., Ltd., Shanghai 201100, China
下载:  全 文 ( PDF ) ( 21262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维与基体的界面对复合材料的力学性能和耐久性有很大影响。相比于传统界面测试方法得到的界面剪切强度(IFSS),采用横向纤维束拉伸试验测得的横向拉伸界面强度可直观地反映纤维束与树脂间的界面性能,同时不受纤维组织微结构的影响,是树脂传递模塑(Resin transfer moul-ding, RTM)成型三维机织复合材料性能预测所需的重要参数。本工作建立了一种考虑纤维与树脂的热膨胀系数差异以及树脂固化收缩影响的横向纤维束拉伸试样的有限元模型,分析界面处的横向应力分布和破坏模式。然后用RTM工艺制备碳纤维束增强环氧树脂横向拉伸试验件,结果验证了模型的准确性。比较不同横向拉伸试样在界面处的受力状态,结果表明,十字型试样能有效改善边缘应力集中的现象,且在界面中心区域受力均匀,得到的横向拉伸强度更加精确。此外,讨论了十字型样品的伸出端宽度、长度等特征尺寸以及增强纤维类型对测试结果的影响。在选择纤维束横向拉伸试样时,为获得更加准确的界面横向拉伸强度,试样伸出端的宽度应尽可能大一些,但需要小于伸出端总长度的1/2以获得理想的破坏模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐文卓
李文晓
苏钊阳
时起珍
关键词:  纤维增强复合材料  纤维束  界面  横向拉伸强度    
Abstract: The interface between fiber and matrix has a great influence on the mechanical properties and durability of composites. Compared with conventional interfacial test methods to obtain the interfacial shear strength (IFSS), the interfacial strength in transverse tension measured by transverse fiber bundle stretching test can visually reflect the interfacial properties between fiber bundles and resin, independent of the microstructure of the fiber, and is an important parameter required for the performance prediction of RTM-molded 3D woven composites. In thiswork, a finite element model of transverse fiber bundle tensile specimen is established to analyze the transverse stress distribution and damage mode at the interface, considering the difference of thermal expansion coefficient between fiber and resin and the effect of resin curing shrinkage. Then the transverse tensile specimens of carbon fiber bundle reinforced epoxy resin were prepared by RTM process, and the results verified the accuracy of the model. The results were compared with different transverse tensile specimen forms in terms of stress state at the interface. The results show that the cross-shaped specimens can effectively improve the stress concentration at the edges, and the stresses are uniform in the central region of the interface. In that case, the transverse tensile strengths obtained are more accurate. The article also discusses the influence of cha-racteristic dimensions such as the width and length of the projecting end of the cross-shaped specimen and the type of reinforcing fibers on the test results. When selecting fiber bundle transverse tensile specimens, to obtain a more accurate interfacial transverse tensile strength, the width of the protruding end of the specimen should be as large as possible, but needs to be less than half of the total length of the protruding end to achieve the desired damage pattern.
Key words:  fiber-reinforced composites    fiber bundles    interface    transverse tensile strength
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  V258+.3  
基金资助: 上海市自然科学基金(19ZR1462400)
通讯作者:  *李文晓,1990年国防科技大学本科毕业,1993年上海交通大学硕士毕业,2000年上海交通大学博士毕业;同济大学航空航天与力学学院副教授。主要研究方向为树脂基复合材料。发表论文60余篇,获发明专利授权7项。wenxiaoli@tongji.edu.cn   
作者简介:  徐文卓,2021年6月毕业于同济大学,获得工学学位。2021年9月至今就读于同济大学,攻读工学硕士学位,在李文晓副教授的指导下进行研究。主要从事RTM工艺复合材料的制备研究。
引用本文:    
徐文卓, 李文晓, 苏钊阳, 时起珍. 纤维束拉伸件几何尺寸对界面横向拉伸强度影响分析[J]. 材料导报, 2024, 38(10): 22120125-9.
XU Wenzhuo, LI Wenxiao, SU Zhaoyang, SHI Qizhen. Analysis of the Influence of the Fiber Bundle Stretchers’ Geometric Dimensions on the Transverse Tensile Strength of the Interface. Materials Reports, 2024, 38(10): 22120125-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120125  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22120125
1 de Kok J M M, Peijs T. Composites Part A:Applied Science and Manufacturing, 1999, 30(7), 917.
2 Domnanovich A, Peterlik H, Kromp K. Composites Science and Technology, 1996, 56(9), 1017.
3 Zhao Z Q, Liu P, Chen C Y, et al. Composites Science and Technology, 2019, 172, 96.
4 Zhou H, Li X B, Zhang T, et al. Aerospace Manufacturing Technology, 2022, 65(13), 84 (in Chinese).
周何, 李小兵, 张婷, 等. 航空制造技术, 2022, 65(13), 84.
5 Zhang X. Plastics Technology, 2018, 46(6), 88 (in Chinese).
张璇. 塑料科技, 2018, 46(6), 88.
6 Siddique A. Quasi-static mode I fracture toughness and damage behaviors of 3-D angle-interlock woven composites. Ph. D. Thesis, Donghua University, China, 2019 (in Chinese).
茹丹. 三维角联锁机织复合材料Ⅰ型准静态断裂韧性和破坏特征. 博士学位论文, 东华大学, 2019.
7 Okoroafor E U, Hill R. Journal of Physics D:Applied Physics, 1995, 28(9), 1816.
8 Li W, Chen W, Tang L Q, et al. Composites Part A-applied Science and Manufacturing, 2019, 121, 45.
9 Deng S Q, Qi B, Hou M, et al. Composites Part A:Applied Science and Manufacturing, 2009, 40(11), 1698.
10 Qi G C, Zhang B M, Du S Y, et al. Composite Structures, 2017, 167, 1.
11 Zhang J N, Deng S Q, Wang Y L, et al. Composites Part A:Applied Science and Manufacturing, 2013, 55, 35.
12 Rosso P, Váradi K. Composites Science and Technology, 2005, 66(16), 3241.
13 Zeng L J, Tao W W, Zhao J J, et al. Nanotechnology Reviews, 2022, 11(1), 625.
14 Qi G C, Zhang B M, Yu Y L. Polymer Testing, 2016, 52, 150.
15 Tandon G P, Kim R Y, Bechel V T. Composites Science and Technology, 2000, 60(12-13), 2281.
16 Gundel D B, Majumdar B S, Miracle D B. Scripta Metallurgica et Mate-rialia, 1995, 33(12), 2057.
17 Chu J M, Claus B, Lim B H, et al. Journal of Composite Materials, 2020, 54(4), 501.
18 Wagner H D, Migliaresi C, Gilbert A H, et al. Journal of Materials Science, 1992, 27(15), 4175.
19 Ageorges C, Friedrich K, Ye L. Composites Science and Technology, 1999, 59(14), 2101.
20 Liu Q. Fiber bundle testing technology and its application in performance evaluation of FRPs. Master’s Thesis, South China University of Techno-logy, China, 2015 (in Chinese).
刘奇. 应用纤维束复合材料试验研究层合板界面性能. 硕士学位论文, 华南理工大学, 2015.
21 Wisnom M R, Potter K D, Ersoy N. Journal of Composite Materials, 2007, 41(11), 1311.
22 White S R, Hahm H T. Journal of Composite Materials, 1992, 26(16), 2402.
23 Li J L. Research on the formation and influence of residual stresses in thermosetting composite parts. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
李金磊. 热固性复合材料制件残余应力形成及影响研究. 硕士学位论文, 大连理工大学, 2020.
24 Abouhamzeh M, Sinke J, Jansen K M B, et al. Composite Structures, 2015, 133, 871.
25 Zhao Y P, Wang S M. Journal of Applied Mechanics, 2020, 37(1), 321.
赵玉萍, 王世鸣. 应用力学学报, 2020, 37(1), 321.
26 Soden P D, Hinton M J, Kaddour A S. Composites Science and Technology, 1998, 58(7), 1011.
[1] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[2] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[3] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[6] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[7] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[8] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[9] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[10] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[11] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[12] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[13] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[14] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[15] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed