Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22070028-8    https://doi.org/10.11896/cldb.22070028
  金属与金属基复合材料 |
新型高再结晶抗力α-Al(MnCr)Si弥散强化Al-Mg-Si-Cu合金研究
王孝国1,2, 秦简2,3,*, 刘方镇2,3, 长海博文2,3
1 山西农业大学农业工程学院,山西 太谷 030801
2 苏州大学高性能金属结构材料研究院,江苏 苏州 215021
3 苏州大学沙钢钢铁学院,江苏 苏州 215021
Novel α-Al(MnCr)Si Dispersion Strengthened Al-Mg-Si-Cu Alloy with Extraordinary Recrystallization Resistance
WANG Xiaoguo1,2, QIN Jian2,3,*, LIU Fangzhen2,3, NAGAUMI Hiromi 2,3
1 College of Agricultural Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
2 High Performance Metal Structural Materials Research Institute, Soochow University, Suzhou 215021, Jiangsu, China
3 Shagang School of Iron and Steel, Soochow University, Suzhou 215021, Jiangsu, China
下载:  全 文 ( PDF ) ( 58920KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Al-Mg-Si-Cu铝合金(6XXX)属于可热处理强化合金,其高比强度、耐腐蚀及优良的成形性能使得它们在各种工业应用中具有吸引力,包括电力传输和交通运输行业;但相对较低的强度和硬度限制了其应用。最新研究表明,在合金中加入Mn/Cr等过渡族元素结合均匀化热处理工艺能够在Al-Mg-Si-Cu铝合金基体中形成纳米级、与基体部分共格的α-Al(MnCr)Si弥散相,从而借助弥散强化作用进一步提升合金的综合力学性能,拓展Al-Mg-Si-Cu铝合金的应用范围。弥散相因其对位错运动和(亚)晶界迁移的钉扎作用而有助于限制动态回复并抑制动态再结晶。此外,弥散相还能够限制合金在固溶处理过程中再结晶晶粒的形核和长大过程,进而抑制静态再结晶的发生。但较少有文献针对弥散相对Al-Mg-Si-Cu合金变形后热处理过程中的微观演变进行量化统计和机理分析,未能建立模型来描述变形条件对微观组织演变的影响。本工作对6061合金和Mn/Cr微合金化的Al-Mg-Si-Cu合金(后者被标记为HSW-1合金)在不同条件下进行热变形处理(变形温度:300、400、500 ℃;应变速率:0.01、0.1、1、10 s-1;真应变:1.2),研究变形合金在固溶和时效热处理过程中的微观结构演变,提出热变形合金经固溶处理后的微观组织调控机制。采用TEM观察证实了HSW-1合金基体中均匀分布着大量纳米级的α-Al(MnCr)Si弥散相。将热变形后的两种合金在560 ℃下盐浴保温不同时间,应用准原位EBSD技术表征微观结构的演变,统计取向差分布及亚晶粒尺寸的变化。结果表明,热变形条件(变形温度、应变速率)对6061和HSW-1合金在固溶处理过程中的静态再结晶行为有显著影响。两种合金静态再结晶行为随着变形温度的降低、应变量的增加及应变速率的升高而得到强化。相同的变形条件下,尽管6061合金静态软化驱动力低于HSW-1合金,但其在固溶处理过程中的静态再结晶行为明显强于HSW-1合金。这表明,弥散相通过钉扎作用有效抑制变形合金在固溶和时效过程中的静态再结晶行为,在显著提升合金的抗再结晶能力的同时保持变形合金的微观结构,使变形合金获得弥散强化和变形强化的综合效果,进而赋予其高强度。最后,通过理论分析提出了T6热处理后两种变形合金的微观结构控制模型。通过调整变形参数,即变形温度和应变速率,可以精确调节热处理后的微观组织成分,实验数据有效支持了模型的可行性。该结果为开发新型高强韧高性能铝合金提供了实验基础和理论分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王孝国
秦简
刘方镇
长海博文
关键词:  Al-Mg-Si-Cu合金  α-Al(MnCr)Si弥散相  热变形  再结晶抗力  微观组织调控    
Abstract: In this work, the commercial 6061 alloy and a Mn/Cr micro-alloyed Al-Mg-Si-Cu (denoted as HSW-1 alloy) were subjected to thermal deformation treatment under different conditions (deformation temperature:300, 400, 500 ℃; strain rate:0.01, 0.1, 1, 10 s-1; true strain:1.2) to study the microstructure evolution of the deformed alloys during solution and aging heat treatments. TEM observation confirmed that a large number of nano-scale α-Al(MnCr)Si dispersiods were uniformly distributed in HSW-1 alloy. Then quasi-in-situ EBSD analysis was used to characterize the microstructure evolution and count the distribution of misorientation distribution as well as sub-grain size changes of the two deformed alloys during different soaking times at 560 ℃. The results showed that the dispersiods could significantly improve the recrystallization resistance of Al-Mg-Si-Cu alloy, maintain the deformation microstructure and obtain high-strength alloys. Finally, theoretical analysis was applied to propose a control model for the microstructure of the two deformed alloys after T6 heat treatment. The microstructure composition after heat treatment can be precisely regulated by adjusting the deformation parameters, that is, deformation temperature and strain rates, and the experimental data effectively support the feasibility of the model.
Key words:  Al-Mg-Si-Cu alloy    α-Al(MnCr)Si dispersiods    hot deformation    recrystallization resistance    microstructure regulation
发布日期:  2023-12-19
ZTFLH:  TG146  
基金资助: 国家自然科学基金(U1864209);山西省重点研发计划项目(201903D211002);博士来晋项目(SXBYKY2021021;2020BQ80)
通讯作者:  *james.qin@suda.edu.cn   
作者简介:  Xiaoguo Wang is a lecturer in College of Agricultural Engineering,Shanxi Agricultural University. He gra-duated from Guizhou University with a bachelor’s degree in materials forming and control engineering in 2009,a master’s degree in vehicle engineering in Guizhou University in 2012,and a doctoral degree in materials science and engineering in Taiyuan University of Science and Technology in 2020. He is currently engaged in the research of automotive light-weighting and high performance aluminum alloy development. He has published more than 20 papers,including Metallurgical and Materials Transactions A,Rare Metal Materials and Engineering,Transactions of Nonferrous Metals Society of China,Advances in Materials Science and Engineering,etc.
Jian Qin is a postdoctoral fellow at High Performance Metal Structural Materials Research Institute,Soochow University. He received his B.S. degree in materials science and engineering from Northeastern University in 2007,materials science from the School of Materials,Northeastern University in 2010,and Ph.D. degree in materials science from the University of Quebec in 2016. Currently,he is mainly engaged in the research of ultra-fine sub-grain control technology and thermal processing process development of new 6XXX alloy for automotive chassis. He has published more than 20 papers,including Metallurgical and Materials Transactions A,Journal of Materials Research and Technology,Journal of Alloys and Compounds,Materials Transactions,etc.
引用本文:    
王孝国, 秦简, 刘方镇, 长海博文. 新型高再结晶抗力α-Al(MnCr)Si弥散强化Al-Mg-Si-Cu合金研究[J]. 材料导报, 2023, 37(24): 22070028-8.
WANG Xiaoguo, QIN Jian, LIU Fangzhen, NAGAUMI Hiromi. Novel α-Al(MnCr)Si Dispersion Strengthened Al-Mg-Si-Cu Alloy with Extraordinary Recrystallization Resistance. Materials Reports, 2023, 37(24): 22070028-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070028  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22070028
1 Ding L, Jia Z, Nie J F, et al. Acta Materialia, 2018, 145, 437.
2 Li Y J, Muggerud A M F, Olsen A, Furu T. Acta Materialia, 2012, 60, 1004.
3 Liu C L, Du Q, Parson N C, et al. Scripta Materialia, 2018, 152, 59.
4 Qin J, Zhang Z, Chen X G. Metallurgical and Materials Transactions A, 2016, 7, 4694.
5 Kenyon M, Robson J, Fellowes J, et al. Advanced Engineering Materials, 2019, 21, 1800494.
6 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Second Edition, Elsevier, 2004.
7 Tang L, Peng X Y, Huang J W, et al. Materials Science & Engineering A, 2019, 754, 295.
8 Qian X, Parson N, Chen X G. Materials Science and Engineering A, 2019, 64, 138253.
9 Li C, Liu K, Chen X G. Journal of Materials Science & Technology, 2020, 39, 135.
10 Qian X M, Parson N, Chen X G. Journal of Materials Science & Techno-logy, 2020, 52, 189.
11 Li Z, Qin J, Zhang H, et al. Metallurgical and Materials Transactions A, 2021, 52(8), 3204.
12 Liu F Z, Qin J, Li Z, et al. Journal of Materials Research and Technology, 2021, 14, 3134.
13 Lodgaard L, Ryum N. Materials Science and Engineering A, 2000, 283(1), 14452.
14 Zhang G, Nagaumi H, Han Y, et al. Materials Science Forum, 2016, 877, 172.
15 Li C, Liu K, Chen X G. Journal of Materials Science and Technology, 2020, 39, 135.
16 Wang X G, Qin J, Nagaumi H, et al. Advances in Materials Science and Engineering, 2020, 2020, 12.
17 Wang X G, Qin J, Liu F Z, et al. Journal of Physics, 2022, 2206, 012004.
18 Barou F, Maurice C, Feppon J M, et al. International Journal of Materials Research, 2009, 1004, 516.
19 Huang Y, Humphreys F J. Acta Materialia, 2000, 48(8), 2017.
[1] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[2] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[3] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[4] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[5] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[6] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[7] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[8] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[9] 郑浩, 刘丽华, 张中武. 热加工对硫化物及氧化物夹杂的影响[J]. 材料导报, 2021, 35(13): 13168-13176.
[10] 张荣华, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162.
[11] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[12] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[13] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[14] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[15] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed