Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22050281-8    https://doi.org/10.11896/cldb.22050281
  金属与金属基复合材料 |
30·60目标下中国氢冶金发展现状及应用前景
佟帅, 艾立群, 洪陆阔*, 周美洁, 袁艺旁
华北理工大学冶金与能源学院,河北 唐山 063210
Development Status and Application Prospects of China's Hydrogen Metallurgy Under the 30·60 Target
TONG Shuai, AI Liqun, HONG Lukuo*, ZHOU Meijie, YUAN Yipang
Metallurgy and Energy College, North China University of Science and Technology,Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 3938KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢铁是高消耗、高排放产业。随着国家提倡的碳达峰、碳中和的任务提上日程,高碳排放的钢铁行业发展低碳经济迫在眉睫,当前氢冶金技术受到高度重视,并且作为冶金领域发展的重要方向。本文主要综述了在碳达峰、碳中和大背景下国内外氢冶金技术的发展现状以及在氢冶金背景下中国钢铁业的发展趋势;以冶金过程热力学和动力学理论研究为基础,对比分析了H2(CO)还原铁氧化物的优缺点,明确H2的还原优势;同时探讨了当前氢冶金发展的技术瓶颈,并对未来氢冶金技术的发展进行展望,为氢冶金技术发展提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
佟帅
艾立群
洪陆阔
周美洁
袁艺旁
关键词:  碳达峰  碳中和  氢冶金  热力学  动力学    
Abstract: Steelmaking is a high-consumption and high-emission industry. With the task of peak carbon dioxide emissions and carbon neutrality advocated by the state being put on the agenda, it is urgent to develop a low-carbon economy in the steel industry with high carbon emissions. At present, hydrogen metallurgy technology is highly valued, and it is an important development direction in metallurgy field. This paper mainly summarizes the development status of hydrogen metallurgy technology at home and abroad under the background of peak carbon dioxide emissions and carbon neutrality, and the development trend of China steel industry under the background of hydrogen metallurgy. Based on the theoretical study of thermodynamics and kinetics of metallurgical process, the advantages and disadvantages of reducing iron oxide by H2(CO) are compared and analyzed, and the reduction advantages of H2 are defined. At the same time, the technical bottleneck of current hydrogen metallurgy development is discussed, and the future development of hydrogen metallurgy technology is prospected, which provides theoretical basis for the development of hydrogen metallurgy technology.
Key words:  carbon peak    carbon neutrality    hydrogen metallurgy    thermodynamics    kinetics
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TF556  
基金资助: 河北省自然科学基金(E2021209101);河北省高等学校科学研究重点项目(ZD2022125)
通讯作者:  * 洪陆阔,2018年6月毕业于钢铁研究总院钢铁冶金专业,获得博士学位。同年加入华北理工大学冶金与能源学院工作至今,主要从事钢铁冶金理论与工艺研究,重点研究方向为钢铁冶金新方法、新技术、新工艺,成分梯度钢材的生产与制备,微波在钢铁冶金中的应用,钢铁冶金过程中碳、硫、磷、氧、氮、氢元素行为及调控的理论研究与工艺开发。主持河北省自然科学基金2项、河北省教改项目1项、河北省教育厅科研项目2项、唐山人才项目1项,发表SCI论文10余篇,授权专利5项。honglk@ncst.edu.cn   
作者简介:  佟帅,2022年1月毕业于华北理工大学冶金专业,获得硕士学位。2022年9月攻读华北理工大学冶金工程博士研究生,主要从事炼钢/铁新技术、品种钢开发和炉渣资源综合利用研究。
引用本文:    
佟帅, 艾立群, 洪陆阔, 周美洁, 袁艺旁. 30·60目标下中国氢冶金发展现状及应用前景[J]. 材料导报, 2023, 37(23): 22050281-8.
TONG Shuai, AI Liqun, HONG Lukuo, ZHOU Meijie, YUAN Yipang. Development Status and Application Prospects of China's Hydrogen Metallurgy Under the 30·60 Target. Materials Reports, 2023, 37(23): 22050281-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050281  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22050281
1 Shangguan F Q, Liu Z D, Yin R Y. China Metallurgy, 2021, 31(9),15 (in Chinese).
上官方钦, 刘正东, 殷瑞钰. 中国冶金, 2021, 31(9),15.
2 Dawood F, Anda M, Shafiullah G M. International Journal of Hydrogen Energy, 2020, 45(7),3847.
3 Fan L J. Chongqing Architecture, 2021, 20(10),23 (in Chinese).
范丽佳. 重庆建筑, 2021, 20(10),23.
4 Wu B L, Gu X Q. Electronic Product Reliability and Environmental Testing, 2021, 39(5),99 (in Chinese).
吴波亮, 谷湘琼. 电子产品可靠性与环境试验, 2021, 39(5),99.
5 Wen Q, Pan D, Huang L, et al. Materials Reports, 2021, 35(17),17090. (in Chinese).
文琦, 潘登, 黄亮, 等. 材料导报, 2021, 35(17),17090.
6 Chernova I I, Balashova E A, Dolotin A, et al. IOP Conference Series:Earth and Environmental Science, 2021, 808(1),012059.
7 Zhang L Q, Chen J. China Metallurgy, 2021, 31(9),21 (in Chinese).
张龙强, 陈剑. 中国冶金, 2021, 31(9),21.
8 Yang F, Zhang J J. Environmental Protection, 2021, 49(Z2),9 (in Chinese).
杨帆, 张晶杰. 环境保护, 2021, 49(Z2),9.
9 Lin Boqiang, Wu Rongxin. Journal of Cleaner Production, 2020, 256,1.
10 Liu B. Prices Monthly, 2021(11),87 (in Chinese).
刘彬. 价格月刊, 2021(11),87.
11 Wang C, Sun R S, Zhang J T. China Economist, 2021, 16(5),32(in Chinese).
王灿, 孙若水, 张九天. China Economist, 2021, 16(5),32.
12 Li Y, Gao L. Journal of South China Agricultural University(Social Science Edition), 2021, 20(5),77(in Chinese).
李勇, 高岚. 华南农业大学学报(社会科学版), 2021, 20(5),77.
13 Xu K D, Jiang G C. Engineering Science, 2000(7),1(in Chinese).
徐匡迪, 蒋国昌. 中国工程科学, 2000(7),1.
14 Xu K D. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2002.001098(in Chinese).
徐匡迪. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2002.001098.
15 Tang J, Chu M S, Li F, et al. Hebei Metallurgy, 2020(8),1(in Chinese).
唐珏, 储满生, 李峰, 等. 河北冶金, 2020(8),1.
16 Wei Z K, Guo R, Xie Q A. Journal of North China University of Science and Technology(Natural Science Edition), 2018, 40(3),26(in Chinese).
魏侦凯, 郭瑞, 谢全安. 华北理工大学学报(自然科学版), 2018, 40(3),26.
17 Hu Junge, Zhou Wentao, Dong Gang. Angang Technology, 2015(1),8(in Chinese).
胡俊鸽, 周文涛, 董刚. 鞍钢技术, 2015(1),8.
18 Zhang J P. The World Metal Herald, 2019(6),58(in Chinese).
张京萍. 世界金属导报, 2019(6),58.
19 Shangguan F Q, Li X P, Zhou J C, et al. Iron and Steel, 2020, 55(6),7(in Chinese).
上官方钦, 郦秀萍, 周继程, 等. 钢铁, 2020, 55(6),7.
20 Yi L Y. Fundamental research on gas-based direct reduction of iron ore pellets with carbon monoxide and hydrogen mixtures. Ph.D. Thesis, Central South University, China, 2013(in Chinese).
易凌云. 铁矿球团混合气体气基直接还原基础研究. 博士学位论文, 中南大学, 2013.
21 Pan C C, Pang J M. China Metallurgy, 2021, 31(9),73(in Chinese).
潘聪超, 庞建明. 中国冶金, 2021, 31(9),73.
22 Xing Y, Cui Y K, Tian J L, et al. Chinese Journal of Engineering, 2021, 31(9),80(in Chinese).
邢奕, 崔永康, 田京雷, 等. 工程科学学报, 2022, 44(4),80.
23 Zhou W T, Hu J G, Guo Y L, et al. World Iron & Steel, 2012, 12(6),60(in Chinese).
周文涛, 胡俊鸽, 郭艳玲, 等. 世界钢铁, 2012, 12(6),60.
24 Wang J P. Metallurgical Management, 2023(16),13(in Chinese).
王建平. 冶金管理, 2023(16),13.
25 Karakay A E, Nuur C, Assbring L. Journal of Cleaner Production, 2018, 195, 651.
26 Fu G Y, Xiong H W. Macroeconomic Management, 2020(6),84(in Chinese).
符冠云, 熊华文. 宏观经济理, 2020(6),84.
27 Christopher K, Dimitrios R. Energy & Environmental Science, 2012, 5(5),6640.
28 Chui F, Elkamel A, Fowler M. Energy & Fuels, 2006, 20(1),954.
29 Dufour J, Serrano D P, Gálvez J L, et al. International Journal of Hydrogen Energy, 2009, 34(3),1370.
30 Zhou J C, Li X P, Shangguan F Q, et al. Iron and Steel, 2019, 54(4),79(in Chinese).
周继程, 郦秀萍, 上官方钦, 等. 钢铁, 2019, 54(4),79.
31 Shangguan F Q, Gan L, Zhou J C, et al. Iron and Steel, 2019, 54(7),114(in Chinese).
上官方钦, 干磊, 周继程, 等. 钢铁, 2019, 54(7),114.
32 Zhou S W, Wei Y G, Zhang S Y. Journal of Cleaner Production, 2019, 236,1.
33 Ge J L. The research on relationship of furnace profile and behavior in gas-based direct reduction shaft. Ph.D. Thesis, Yanshan University, China, 2014(in Chinese).
葛俊礼. 气基直接还原竖炉炉内行为与炉型关系研究. 博士学位论文, 燕山大学, 2014.
34 Spreitzer D, Schenk J. Steel Research International, 2019, 90(10),201900108.
35 Chen J, Chen W, Mi L, et al. Metals, 2018, 9(1),95.
36 Chen G. The kinetics of the gas-based reduction of iron oxide. Master's Thesis, Dalian University of Technology, China, 2011(in Chinese).
陈赓. 气基还原氧化铁动力学机理研究. 硕士学位论文, 大连理工大学, 2011.
37 Bahagat M, Khedr M H. Materials Science and Engineering B, 2007, 138(3),251.
38 Bai M H, Long H, Ren S B, et al. ISIJ Intenational, 2018, 58(6),1034.
39 Habermann A, Winter F, Hofbauer H, et al. ISIJ International, 2000, 40(10),935.
40 Vogl V, Ahman M, Nilsson L J. Journal of Cleaner Production, 2018, 203,736.
41 Quader M A Sdawal S Z. Renewable Sustainable Energy Reviews, 2016, 55,537.
42 Parisi D R, Laborde M A. Chemical Engineering Journal, 2004, 104(1-3),35.
43 Tang J, Chu M S, Li F, et al. International Journal of Minerals Metallurgy and Materials, 2015, 22(6),562.
44 Wang R R, Zhang J L, Liu Y R, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(7),752.
45 Feng C, Chu M S, Tang J, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(6),609.
46 Shen F M, Jiang X, Wei G, et al. China Metallurgy, 2014, 24(1),2(in Chinese).
沈峰满, 姜鑫, 魏国, 等. 中国冶金, 2014, 24(1),2.
47 Kyoichi, Araki. 材料とプロセス, 2018, 31,106.
48 Salzgitter F. Fuel Cells Bulletin, 2018, 12,12.
49 Barde A A, Klausner J F, Mei R. International Journal of Hydrogen Energy, 2016, 41(24),10103.
50 Teplov O A. Russian Metallurgy, 2012, 2012(1),8.
51 Lin H Y. Thermochimica Acta, 2003, 400(1/2),61.
52 Qu Y X, Luo Y J, Shi S Q, et al. Journal of Materials and Metallurgy, 2019, 18(2),79(in Chinese).
曲迎霞, 罗勇进, 石邵钦, 等. 材料与冶金学报, 2019, 18(2),79.
53 Wei Z, Zhang J, Qin B P, et al. Powder Technology, 2018, 332,18.
54 Huang X H. Metallurgical principle of steel, Metallurgical Industry Press, China, 2013, pp.289(in Chinese).
黄希祜. 钢铁冶金原理, 冶金工业出版社, 2013, pp.289.
55 Hayashi S Y. ISIJ International, 1994, 34(7),555.
56 Nagasaka T, Hina M, B Y S. Metall and Materi Trans B, 2000, 31(5),945.
57 Hideki O, Toshinari Y, Tateo U. ISIJ International, 2003, 43(10),1502.
58 Tateo U, Tsunehisa N, Hideki O, et al. Journal of Iron and Steel Research International, 2009, 16(2),1179.
59 Wang H T, Sohn H Y. Ironmaking & Steelmaking, 2011, 38(6),447.
60 Quan F M, Wang M H. Gansu Metallurgy, 2021, 43(3),27(in Chinese).
权芳民, 王明华. 甘肃冶金, 2021, 43(3),27.
61 Duo X Y, Chen Y L, Tian Q H, et al. The Chinese Journal of Nonferrous Metals, 2021,31(7),1891(in Chinese).
郭学溢, 陈远林, 田庆华, 等. 中国有色金属学报, 2021, 31(7),1891.
62 Bai M H, Li L Y, Xu K, et al. Journal of Yanshan University 2016, 40(6), 481(in Chinese).
白明华, 李路叶, 徐宽, 等. 燕山大学学报, 2016, 40(6), 481.
63 Zhang P L, Zheng L. Shanxi Chemical Industry, 2014, 34(5),54(in Chinese).
张佩兰,郑黎. 山西化工, 2014, 34(5),54.
64 Zhang F J, Yang S F, Li J S, et al. Chinese Journal of Engineering, 2022, 44(9),1483(in Chinese).
张福君, 杨树峰, 李京社, 等. 工程科学学报, 2022, 44(9),1483
65 Cui Z F, Xu A J, Sahngguan F Q. Chinese Journal of Engineering, 2022,44(9),1496.
崔志峰, 徐安军, 上官方钦. 工程科学学报, 2022, 44(9),1496.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[3] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[4] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[5] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[6] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[7] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[8] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[9] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[10] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[11] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[12] 黄清华, 陈爽, 刘明, 周新远, 黄艳斐, 王海斗. 反应等离子喷涂技术研究现状[J]. 材料导报, 2023, 37(20): 22030146-12.
[13] 王艳林, 张灵通, 张博炜, 綦才, 陈晓华, 王自东. 高强韧弹簧钢中Ti-V-B-N-C系微量元素耦合热力学分析及其对第二相析出行为的影响[J]. 材料导报, 2023, 37(20): 22030303-7.
[14] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[15] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed