Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050103-6    https://doi.org/10.11896/cldb.22050103
  无机非金属及其复合材料 |
花岗岩石粉对砂浆干燥收缩性能的影响
王将华1,2,3,4, 薛翠真1,2,3,4,*, 张宇1,2,3,4, 张云升1,2,3,4,*, 乔宏霞1,2,3,4, 胡向楠1,2,3,4, 赵洋1,2,3,4
1 兰州理工大学土木工程学院,兰州 730050
2 西部先进土木工程材料创新研究中心,兰州 730050
3 甘肃省先进土木工程材料工程研究中心,兰州 730050
4 高性能土木工程材料国家重点实验室甘肃研究基地,兰州 730050
Effect of Granite Powder on Drying Shrinkage
WANG Jianghua1,2,3,4, XUE Cuizhen1,2,3,4,*, ZHANG Yu1,2,3,4, ZHANG Yunsheng1,2,3,4,*, QIAO Hongxia1,2,3,4, HU Xiangnan1,2,3,4, ZHAO Yang1,2,3,4
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Western Advanced Civil Engineering Materials Innovation Research Center, Lanzhou 730050, China
3 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China
4 Gansu Research Base of Key Laboratory of High Performance Civil Engineering Materials, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 11350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对花岗岩石粉,首先研究了不同粉磨时间(0、20、40、60 min)下石粉的颗粒特征,并探究了粉磨时间及石粉掺量(0%、5%、10%、15%、20%,质量分数,下同)对砂浆干燥收缩性能的影响规律。其次,采用扫描电镜(SEM)、同步热分析仪(TG-DSC)深入分析了石粉掺量和粉磨时间对掺花岗岩石粉砂浆的微结构形成特征和水化产物的影响规律。最后,基于灰熵分析方法,计算得出石粉颗粒特征参数与砂浆28 d干燥收缩活性指数的灰熵关联度,从而把握颗粒特征参数中影响干燥收缩的关键参数。结果表明,原状石粉颗粒粒径在56.4~63.2 μm含量的占比最大,为5.1%,经20、40、60 min粉磨后,粒径在17.8~20.0、22.4~25.2、15.9~17.8 μm占比达到最大,分别为3.5%、3.3%、3.4%。当粉磨时间延长时,掺石粉砂浆的抗干缩性能表现为先降低后升高再降低的变化趋势。相比基准配合比,掺5%、10%、15%的粉磨40 min的石粉,砂浆28 d干缩率分别减小了11.9%、35.2%、45.3%,当掺量增至20%时,干缩率减少了1.9%。灰熵分析表明,石粉的粒度累积分布数达到10%所对应的粒径、比表面积和20~40 μm颗粒含量是影响砂浆干缩性能的关键参数,面积平均粒径和大于60 μm颗粒含量对砂浆干缩性能影响较弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王将华
薛翠真
张宇
张云升
乔宏霞
胡向楠
赵洋
关键词:  花岗岩石粉  干燥收缩  颗粒特征  灰熵分析    
Abstract: In this study, the characteristics of ground granite powder with different times (0, 20, 40, and 60 min) were studied. The effects of grinding time and amount of granite powder (0%, 5%, 10%, 15%, and 20%) on the drying shrinkage of mortar were investigated. Scanning electron microscope and TG-DSC were used to analyze the microstructure and hydration products of granite stone powder mortar. Finally, gray entropy analysis was used to observe the key particle parameters affecting drying shrinkage; this was done by determining the gray entropy correlation between the particle parameters of granite powder and the 28 d drying shrinkage activity index of mortar. The results indicate that the highest proportion of the particle sizes in the range of 56.4—63.2 μm in the raw granite powder is 5.1%. After crushing, the proportions of the particle sizes in the ranges of 17.8—20.0, 22.4—25.2, and 15.9—17.8 μm are 3.5%, 3.3%, and 3.4%, respectively. With increasing grinding time, the drying shrinkage resistance first decrease, then increase and then decrease. Compared with the drying shrinkage rate of the reference mix, those of 5%-, 10%-, and 15%-stone-powder-added mortar mixes (ground for 40 min) at 28 d are lower by 11.9%, 35.2%, and 45.3%, respectively. Drying shrinkage decreased by 1.9% when the content increase to 20%. Gray entropy analysis shows that the particle size corresponding to the cumulative distribution of the particle size of the stone powder reaches 10%. Specific surface area and the particle content of 20~40 μm are found to be the key parameters affecting the drying shrinkage performance of mortar. The area average particle size and the scope of particles >60 μm had significantly minor effects on the drying shrinkage performance of mortar.
Key words:  granite powder    drying shrinkage    particle characteristic    gray entropy analysis
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(U21A20150;51878153;52108219);绿色矿山机制砂石阶梯化应用研究(031124);甘肃省绿色智慧公路关键技术研究及示范(21ZD3GA002)
通讯作者:  * 薛翠真,兰州理工大学土木工程学院副教授、硕士研究生导师。2017年毕业于长安大学,获得工学博士学位。主要研究方向为水泥基及水泥混凝土材料结构、性能研究,混凝土耐久性能损伤规律及机理研究,建筑固废再生利用研究,机制砂及石粉再生利用技术等方面研究。主持国家自然科学基金青年基金项目1项、甘肃省青年科技基金项目1项、中建四局科技项目1项、公路建设与养护技术、材料及装备交通运输行业研发中心(甘肃路桥建设集团有限公司)开放基金项目1项、高校基金项目1项。参与国家自然科学基金地区联合基金、交通运输部建设科技项目、国家自然科学基金项目、地区基金项目等20余项横纵向课题。以第一作者或通讯作者身份发表学术论文20余篇,其中SCI、EI检索论文13篇。
张云升,兰州理工大学土木工程学院教授、博士研究生导师、长江学者特聘教授。2004年毕业于东南大学,获得工学博士学位。目前研究领域为严酷环境下结构混凝土耐久性、超高性能混凝土与强动载效应、绿色建筑材料。研究成果在国内外著名刊物共发表150余篇论文。xuecuizhen2008@163.com;zhangyunsheng2011@163.com   
作者简介:  王将华,现为兰州理工大学土木工程学院硕士研究生,目前主要从事机制砂高性能混凝土基本力学性能及收缩、开裂性能的研究。
引用本文:    
王将华, 薛翠真, 张宇, 张云升, 乔宏霞, 胡向楠, 赵洋. 花岗岩石粉对砂浆干燥收缩性能的影响[J]. 材料导报, 2023, 37(22): 22050103-6.
WANG Jianghua, XUE Cuizhen, ZHANG Yu, ZHANG Yunsheng, QIAO Hongxia, HU Xiangnan, ZHAO Yang. Effect of Granite Powder on Drying Shrinkage. Materials Reports, 2023, 37(22): 22050103-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050103  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050103
1 Liu T. Experimental study on the influence of manufacture sand characteristics on the properties of cement-based materials. Master's Thesis, Lanzhou Jiaotong University, China, 2021 (in Chinese).
刘通. 机制砂特性对水泥基材料性能影响的试验研究. 硕士学位论文, 兰州交通大学, 2021.
2 Sun R R, Wang Z, Huang F L, et al. Materials Reports, 2021, 35(S1), 211 (in Chinese).
孙茹茹, 王振, 黄法礼, 等. 材料导报, 2021, 35(S1), 211.
3 Wen J Q. Properties and mechanism of ground limestone as concrete mi-neral additive. Ph. D. Thesis, Building Materials Research Institute, China, 2010 (in Chinese).
文俊强. 石灰石粉作混凝土掺合料的性能研究及机理分析. 博士学位论文, 中国建筑材料科学研究总院, 2010.
4 Kumar S, Kumar R, Bandopadhyay A. Resources, Conservation and Recycling, 2006, 48(4), 301.
5 Wei M. Study on the powder of metamorphic slate waste for partly replacing of cement. Ph. D. Thesis, Dalian University of Technology, China, 2008 (in Chinese).
韦明. 变质岩废弃物石粉部分替代水泥的研究. 博士学位论文, 大连理工大学, 2008.
6 Hu J W. Study on the optimized matching of limestone powder and cementitious materials. Ph. D. Thesis, Hebei University of Technology, China, 2015 (in Chinese).
胡建伟. 石灰岩石粉与水泥基胶凝材料优化匹配的研究. 博士学位论文, 河北工业大学, 2015.
7 Zhang H R, Ji T, He B J, et al. Construction and Building Materials, 2019, 213, 469.
8 Mashaly A O, Shalaby B N. Rashwan M A. Construction and Building Materials, 2018, 169, 800.
9 Xue C Z, Shen A Q, Guo Y C. Materials Reports, 2019, 33(8), 1348 (in Chinese).
薛翠真, 申爱琴, 郭寅川. 材料导报, 2019, 33(8), 1348.
10 Xue C Z, Shen A Q, Qiao H X. Journal of South China University of Technology(Natural Science Edition), 2020, 48(3), 136 (in Chinese).
薛翠真, 申爱琴, 乔宏霞. 华南理工大学学报(自然科学版), 2020, 48(3), 136.
11 Lin Y Z. Study on application of C55 machine-made sand in bridge girder. Master's Thesis, Chongqing Jiaotong University, China, 2014 (in Chinese).
林远志. C55机制砂混凝土在桥梁主梁的应用研究. 硕士学位论文, 重庆交通大学, 2014.
12 Zhou S C. Study on evolutionary regularity and micro mechanisms of macro properties of composite limestone powder-fly ash-slag concrete. Ph. D. Thesis, China University of Mining and Technology, 2019 (in Chinese).
周淑春. 复合石灰石粉-粉煤灰-矿渣混凝土宏观性能演化规律与微观机理研究. 博士学位论文, 中国矿业大学, 2019.
13 Tandré O, Aditya K, Jeffrey W B, et al. Journal of the American Ceramic Society, 2013, 96(6), 1978.
14 Bentz D P. Cement and Concrete Composites, 2014, 53, 214.
15 Taijiro Sato, Fatoumata Diallo. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2141(1), 61.
16 Bonavetti V L, Rahhale V F, Irassar F. Cement and Concrete Research, 2001, 31(6), 853.
17 Peng Y Y, Gao Y X, Zhao R X, et al. China Concrete and Cement Products, 2014(6), 13 (in Chinese).
彭园园, 高育欣, 赵日煦, 等. 混凝土与水泥制品, 2014(6), 13.
18 Yao C K. Research on the influences of micro fines on properties. Master's Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
姚楚康. 石粉特性对混凝土性能的影响研究. 硕士学位论文, 武汉理工大学, 2014.
19 Sun R R. Study on properties of composite cementitious materials with different lithological stone powder. Master's Thesis, China Academy of Railway Sciences. Railway Architecture Research Institute, China, 2020(in Chinese).
孙茹茹. 不同岩性石粉-水泥基复合胶凝材料性能研究. 硕士学位论文, 中国铁道科学研究院, 2020.
20 Cai A L. Study on the test method and mechanism for drying shrinkage of high performance cement. Ph. D. Thesis, Nanjing University of Techno-logy, China, 2005 (in Chinese).
蔡安兰. 高性能水泥干缩的测试方法及机理研究. 博士学位论文, 南京工业大学, 2005.
21 Li X G, Li M L, Ma B G, et al. Concrete, 2013, 35(8), 87 (in Chinese).
李相国, 李孟蕾, 马保国, 等. 混凝土, 2013, 35(8), 87.
22 Yuan H. Influence of limestone powder on concrete properties. Master's Thesis, Central South University, China, 2009 (in Chinese).
袁航. 石灰石粉对混凝土性能的影响. 硕士学位论文, 中南大学, 2009.
23 Chen Z Y. Highway, 2021, 66(10), 331 (in Chinese).
陈宗燕. 公路, 2021, 66(10), 331.
24 Chen X P. Study on shrinkage characteristic of concrete at early age. Master's Thesis, Changjiang Academy of Sciences, China, 2016 (in Chinese).
陈笑彭. 混凝土早龄期收缩变形特性研究. 硕士学位论文, 长江科学院, 2016.
25 Cai K, Wang D. Structural and Multidisciplinary Optimization, 2017, 56(6), 1539.
[1] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[2] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[3] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[6] 徐士林, 李绍纯, 耿永娟, 张友来, 陈旭, 许绍宸. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050.
[7] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[8] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[9] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[10] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[11] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed