Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030259-7    https://doi.org/10.11896/cldb.22030259
  无机非金属及其复合材料 |
压电增强二硫化钼/氧化锌近红外光催化降解氨氮
潘权子1,2, 刘文晓1,2, 孟则达1,2,*, 罗莉1,2, 刘守清1,2,*
1 苏州科技大学化学与生命科学学院,江苏 苏州 215009
2 江苏省环境功能材料重点实验室,江苏 苏州 215009
Piezo-enhanced Degradation of Ammonia-Nitrogen Based on MoS2/ZnO Materials Upon Near-infrared Irradiation
PAN Quanzi1,2, LIU Wenxiao1,2, MENG Zeda1,2,*, LUO Li1,2, LIU Shouqing1,2,*
1 School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Jiangsu Provincial Key Laboratory of Environmental Functional Materials, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 10572KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将硫化钼(MoS2)与氧化锌(ZnO)纳米棒结合,制备了MoS2/ZnO压电近红外光催化复合材料。采用X-射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见-近红外漫反射光谱(UV-VIS-INF-DRS)、 固体荧光等方法对MoS2/ZnO样品进行了表征。结果表明,MoS2/ZnO生成了异质结。以0.1 g MoS2/ZnO材料作为压电近红外光催化剂,在压电条件下降解pH=10浓度为100.0 mg/L的氨氮溶液,当在搅拌(250 r/min)条件下,用850 nm波长的近红外光照射6 h时,氨氮的降解率为90.97%;而相同条件下,无压电效应时近红外光催化降解氨氮的效率仅为65.16%,表明压电效应增强了氨氮的降解。其原因是ZnO压电构建的内建电场增强了MoS2光生电子与空穴的分离效率。动力学研究表明,MoS2/ZnO降解氨氮的反应遵循一级反应动力学规律,其表观反应速率常数的平均值为0.298 7 h-1。该研究结果对利用太阳能和水波能降解氨氮具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘权子
刘文晓
孟则达
罗莉
刘守清
关键词:  MoS2  ZnO  近红外光  压电效应  氨氮  降解    
Abstract: AMoS2/ZnO piezo-photocatalyst in response to near-infrared irradiation was prepared using hydrothermal reaction. MoS2/ZnO was characte-rized with X-ray powder diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), ultraviolet-visible-near-infrared diffuse reflectance spectroscopy(UV-VIS-INF-DRS), solid fluoroscopy. The facts showed that the heterojunction was formed between MoS2 and ZnO. MoS2/ZnO of 0.10 g was used as the photocatalyst to degrade 100.0 mg/L ammonia-nitrogen with pH 10.0 under stirring (250 r/min) and upon 850 nm near-infrared irradiation for 6 h, resulting in the degradation ratio of 90.97%, whereas the degradation ratio of ammonia-N was only 65.16% under similar conditions except for stirring. It indicated that piezo-effect enhanced the degradation of ammonia-N, which is ascribed to the enhanced separation of photo-generated electrons and holes in MoS2 upon near-infrared irradiation. The kinetics showed the degradation reaction of ammonia follows the first-order reaction law, the average of the apparent kinetics constant is equal to 0.298 7 h-1. The research showed solar irradiation and water waves could be used to remove ammonia in wastewaters.
Key words:  MoS2    ZnO    near-infrared light    piezo-effect    ammonia-nitrogen    degradation
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O643  
基金资助: 国家自然科学基金(21576175); 江苏省自然科学基金社会发展重点项目(BE2020662);绿色催化四川省高校开放课题资助项目(LZJ1304)
通讯作者:  *孟则达,苏州科技大学副教授,2011年韩国韩瑞大学材料工程专业硕士毕业,2014年韩国韩瑞大学材料工程专业博士毕业,博士毕业后到苏州科技大学工作至今。目前主要从事催化材料制氢、燃料电池、电化学发光、光催化及压电催化等方面的研究工作。发表论文50余篇,包括Applied catalysis B、Journal of Materials Chemistry C、Applied Surface Science等。compelitely@163.com; 刘守清,苏州科技大学教授,分别于武汉大学和南京大学获得理学硕士学位和博士学位,2003至2004年在日本国立物质材料研究所从事博士后研究。现已在Carbon、 Chemical Enginee-ring Journal、 Journal of Hazardous Materials、Electrochimica Acta、Biosensors & Bioelectronics、《物理化学》《催化学报》等期刊上发表 80多篇学术论文。申请国家发明专利52项,获得授权发明专利35项,转让专利15项。刘守清教授是国家自然科学基金委员会基金项目函评专家、教育部学位中心学位论文评审专家、国家高新技术企业评审专家。其团队的研究方向和研究领域为电催化材料制氢、燃料电池、电化学发光、光催化及压电催化等。shouqing_liu@163.com   
作者简介:  潘权子,苏州科技大学材料学专业硕士研究生。2015—2019年就读于湖北工程学院材料科学与工程专业,2019至今就读于苏州科技大学,主要研究方向为压电材料制备及其降解水体污染物。
引用本文:    
潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
PAN Quanzi, LIU Wenxiao, MENG Zeda, LUO Li, LIU Shouqing. Piezo-enhanced Degradation of Ammonia-Nitrogen Based on MoS2/ZnO Materials Upon Near-infrared Irradiation. Materials Reports, 2023, 37(19): 22030259-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030259  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22030259
1 Wang Z Y, Mi B X. Environmental Science & Technology, 2017, 51(15), 8229.
2 Zhang H, Gu Q Q, Zhou Y W, et al. Applied Surface Science, 2020, 504, 144065.
3 Jiang Z Y, Tan X J, Huang Y X. Science of the Total Environment, 2022, 806, 150924.
4 Hong D Y, Zang W L, Guo X, et al. ACS Applied Materials & Interfaces, 2016, 8(33), 21302.
5 Li J, Luo K Y, Hu W, et al. Materials Reports, 2021, 35(4), 4017(in Chinese).
李靖, 罗凯怡, 胡文, 等. 材料导报, 2021, 35(4), 4017.
6 Wang Z Q, Yuan H, Sun Y F, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2226(in Chinese).
王子强, 袁欢, 孙翼飞, 等. 复合材料学报, 2022, 39(5), 2226.
7 Zhang F, Niu S, Guo W, et al. ACS Nano, 2013, 7(5), 4537.
8 Laurenti M, Garino N, Canavese G, et al. ACS Applied Matererials & Interfaces, 2020, 12(23), 25798.
9 Ren Z Q, Li X, Guo L X, et al. Materials Letters, 2021, 292, 129635.
10 Ramadan A G, Islam M H, Said M E, et al. Journal of Environmental Chemical Engineering, 2022, 10, 107337.
11 Kumar S, Kumar A, Rao V N, et al. ACS Applied Energy Materials, 2019, 2(8), 5622.
12 Dong Y T, Yuan H P, Zhang R N, et al. Journal of the American Association for Laboratory Animal Science, 2019, 62(6), 1767.
13 Zhang X, Liu W X, Zhou Y W, et al. Journal of Electroanalytical Chemistry, 2021, 894, 115359.
14 Zhu L, Zeng W, Li Y Q. Materials Letters, 2018, 228, 331.
15 Yu F C, Nan D M, Song T Y, et al. Materials Reports, 2020, 34(8), 8003(in Chinese).
于富成, 南冬梅, 宋天云, 等. 材料导报, 2020, 34(8), 8003.
16 Reddy G K, Reddy A J, Krishana R H, et al. Journal of Asian Ceramic Societies, 2017, 5, 350.
17 Patel M, Pataniya P, Vala H, et al. Journal of Physical Chemistry C, 2019, 123(36), 21941.
18 Kumar S, Kumar A, Rao V N, et al. ACS Applied Energy Materials, 2019, 2(8), 5622.
19 Li B S, Li J J, Zhao J W. Journal of Nanoscience & Nanotechnology, 2012, 12(12), 8879.
20 Aziz H Y, Maryam S G. Separation & Purification Technology, 2017, 184, 334.
21 Chang K, Mei Z W, Wang T, et al. ACS Nano, 2014, 8(7), 7078.
22 Ye J, Liu S H, Liu W X, et al. ACS Omega, 2019, 4(4), 6411.
23 Wang Z J, Hu T C, He H X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 10162.
24 Li N, Shi M, Sun G, et al. Inorganic Chemistry, 2023, 62(21), 8261.
[1] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[2] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[3] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[4] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[5] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[6] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[7] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[8] 吴雷, 吴红艳, 邱丝雯, 周军, 张秋利, 田玮. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 22020006-9.
[9] 曹金安, 王景平, 徐友龙, 邵亮, 郭思琪, 王学川. 天然可生物降解聚合物壁材在微胶囊中的应用[J]. 材料导报, 2023, 37(18): 22010221-19.
[10] 陈丹丹, 李燕, 王爱国. 尖晶石型铁氧体异质结的构建及用于有机污染物光催化降解的研究进展[J]. 材料导报, 2023, 37(16): 21110278-10.
[11] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[12] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[13] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[14] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[15] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed