Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21110231-5    https://doi.org/10.11896/cldb.21110231
  金属与金属基复合材料 |
球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响
常杜娟, 邓莉萍, 罗军明*
南昌航空大学材料科学与工程学院,南昌 330063
Effects of Ball Milling Process and Alloying Element Al on Preparation of NbVMoTa High Entropy Alloy Powders by Mechanical Alloying
CHANG Dujuan, DENG Liping, LUO Junming*
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 27463KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用机械合金化制备NbVMoTa难熔高熵合金粉末,研究了球磨转速、球磨时间和合金元素Al对合金化过程中粉末相结构和形貌等的影响。采用X射线衍射仪(XRD)、附带能谱仪(EDS)的扫描电子显微镜(SEM)和透射电子显微镜(TEM)对粉末进行了分析。结果表明:随着球磨转速的提高,粉体颗粒间有效碰撞次数增加,相变能量增多,结晶速度加快,促进了Nb、V、Mo、Ta各元素粉末之间的固溶,转速由200 r/min提高至400 r/min后,不同粉末之间的固溶明显增强;在400 r/min条件下,随着球磨时间的延长,粉末间的固溶更加明显,球磨100 h,粉末之间实现合金化,形成具有单一BCC结构的细晶NbVMoTa难熔高熵合金粉末,粉末粒径在30~60 nm。添加的合金元素Al与其他元素之间形成较强的极性键,促进了系统的有序排列,混合焓为负值,可加快体系的合金化进度,(NbVMoTa)88Al12粉末在400 r/min下球磨60 h即可实现合金化,形成单一BCC结构的细晶难熔高熵合金粉末,粉末粒径在40~60 nm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常杜娟
邓莉萍
罗军明
关键词:  机械合金化  难熔高熵合金  BCC固溶体      
Abstract: NbVMoTa refractory high entropy alloy (RHEA) powders were prepared by mechanical alloying. The effects of milling speed, milling time and alloying element Al on phase structure and morphology during mechanical alloying process were investigated. The powders were characte-rized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). The results show that the intersolubility of Nb, V, Mo and Ta element powders increases obviously by the increase of effective collision number, phase transformation energy and crystallization speed when the milling speed increases from 200 r/min to 400 r/min. Furthermore, the intersolubility of various powders improves significantly with milling time at 400 r/min. Especially, the fine NbVMoTa RHEA powders with a particle size of about 30—60 nm form a single body-centered cubic (BCC) structure after milled at 400 r/min for 100 h. In addition, the alloying progress can be accelerated by adding alloying element Al due to the formation of strong polar bonds, the orderly arrangement and the negative mixing enthalpy between Al and other component elements. The fine (NbVMoTa)88Al12 RHEA powders with single BCC structure form after milled at 400 r/min for 60 h and the powders particle size is about 40—60 nm.
Key words:  mechanical alloying    refractory high entropy alloy (RHEA)    BCC solid solution    aluminum
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金(52161021);江西省教育厅科技计划项目(DA202101164);南昌航空大学博士启动基金(EA201901206)
通讯作者:  *罗军明,南昌航空大学材料科学与工程学院教授。本科毕业于北京航空航天大学金属材料及热处理专业,博士毕业于南昌大学材料物理与化学专业。2000年到南昌航空大学工作至今,主要从事金属基复合材料、粉末冶金材料、稀土材料、材料热处理及表面处理等研究。发表论文100余篇,其中SCI、EI收录80余篇,授权发明专利12件。ljmniat@126.com   
作者简介:  常杜娟,2018年7月于九江学院取得工学学士学位。现为南昌航空大学材料科学与工程学院2019级硕士研究生,主要研究方向为难熔高熵合金。
引用本文:    
常杜娟, 邓莉萍, 罗军明. 球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响[J]. 材料导报, 2023, 37(10): 21110231-5.
CHANG Dujuan, DENG Liping, LUO Junming. Effects of Ball Milling Process and Alloying Element Al on Preparation of NbVMoTa High Entropy Alloy Powders by Mechanical Alloying. Materials Reports, 2023, 37(10): 21110231-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110231  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21110231
1 Han Z D, Luan H W, Liu X, et al. Materials Science and Engineering:A, 2018, 712, 380.
2 Soni V, Gwalani B, Alam T, et al. Acta Materialia, 2020, 185, 89.
3 Yeh J W, Chen S J, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
4 Hung S, Wang C, Chen Y, et al. Surface and Coatings Technology, 2019, 375, 802.
5 Senkov O N, Miracle D B, Chaput K J, et al. Journal of Materials Research, 2018, 33(19), 1.
6 Xin S W, Zhang M, Yang T T, et al. Journal of Alloys and Compounds, 2018, 769, 597.
7 Han Z D, Chen N, Zhao S F, et al. Intermetallics, 2017, 84, 153.
8 Senkov O N, Wliks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
9 Kang B, Lee J, Ryu H J, et al. Journal of Alloys and Compounds, 2018, 767, 1012.
10 Chen G, Luo T, Shen S C, et al. Materials Reports, 2021, 35(17), 17064(in Chinese).
陈刚, 罗涛, 沈书成, 等. 材料导报, 2021, 35(17), 17064.
11 Han J, Su B, Lu J, et al. Intermetallics, 2020, 123, 106832.
12 Hong S H, Ryu H J, Kong T, et al. Journal of Materials Science & Technology, 2021, (10), 32.
13 Liu Q, Wang G, Sui X, et al. Journal of Alloys and Compounds, 2021, 865, 158592.
14 Ron A, Kim D, Nam S, et al. Journal of Alloys and Compounds, 2020, 822, 153423.
15 Das S, Robi P S. Advanced Powder Technology, 2020, 31(12), 4619.
16 Shkodich N F, Spasova M, Farle M, et al. Journal of Alloys and Compounds, 2020, 816, 152611.
17 Pan J, Dai T, Lu T, et al. Materials Science and Engineering:A, 2018, 738, 362.
18 Liu Q, Wang G, Sui X, et al. Journal of Alloys and Compounds, 2021, 865, 158592.
19 Tong Y G, Bai L H, Liang X B, et al. Journal of Alloys and Compounds, 2021, 873, 159740.
20 Juan C C, Tseng K K, Hsu W L, et al. Materials Letters, 2016, 175, 284.
21 Huang H, Wu Y, He J, et al. Advanced Materials, 2017, 29(30), 1701678.
22 Tong Y, Bai L, Liang X, et al. Intermetallics, 2020, 126, 106928.
23 Nie X W, Cai M D, Cai S. International Journal of Refractory Metals and Hard Materials, 2010, 98, 105568.
24 Bharduaj V, Zhou Q, Zhang F, et al. Tribology International, 2021, 160, 107031.
25 Duan Y Q, Lin Z Z, Song C, et al. Modern Manufacturing Technology and Equipment, 2016(8), 13(in Chinese).
段友全, 刘振振, 宋驰, 等. 现代制造技术与装备, 2016(8), 13.
26 Miracle D B, Senkov O N, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
27 Zhang J, Hu Y, Wei Q, et al. Journal of Alloys and Compounds, 2020, 827, 154301.
28 Lin C, Juan C, Chang C, et al. Journal of Alloys and Compounds, 2015, 624, 100.
29 Cao Y K, Liu Y, Liu B, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(7), 1476.
30 Cao T, Shang J, Zhao J, et al. Materials Letters, 2016, 164, 344.
31 Hao W J, Sun R L, Niu W, et al. Materials Reports, 2020, 34(Z2), 330(in Chinese).
郝文俊, 孙荣禄, 牛伟, 等. 材料导报, 2020, 34(Z2), 330.
32 Senkov O N, Senkova S V, Woodward C. Acta Materialia, 2014, 68, 214.
33 Park J M, Kang J W, Lee W H, et al. Materials Letters, 2019, 255(15), 126513.
34 Bachani S K, Wang C J, Lou B S, et al. Surface and Coatings Technology, 2020, 403(7), 126351.
35 Peng H Y, Kang Z X, Li X Z, et al. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6), 513(in Chinese).
彭海燕, 康志新, 李小珍, 等. 粉末冶金材料科学与工程, 2020, 25(6), 513.
36 Bor A, Jargalsaikhan B, Uranchimeg K, et al. Powder Technology, 2021, 394, 181.
37 Duan Y, Cui Y, Zhang B, et al. Journal of Alloys and Compounds, 2019, 773, 194.
38 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817.
39 Chen Y, Hu Y, Hsieh C, et al. Journal of Alloys and Compounds, 2009, 481(1-2), 768.
40 Fathy A, Wagih A, Abu-oqail A. Ceramics International, 2019, 45(2), 2319.
41 Abu-oqail A, Wagih A, Fathy A, et al. Ceramics International, 2019, 45(5), 5866.
42 Wagih A. Advanced Powder Technology, 2015, 26(1), 253.
43 Ge S, Fu H, Zhang L, et al. Materials Science and Engineering:A, 2020, 784, 139275.
44 Liu Y Y, Chen Z, Chen Y Z, et al. Vacuum, 2019, 169, 108837.
[1] 龚青南, 王德辉. 不同离子对混凝土碱硅酸反应影响的研究进展[J]. 材料导报, 2024, 38(2): 22060212-15.
[2] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[3] 闫占峰, 郑健, 周韦, 王浩. 氦离子辐照下6061-Al合金中的氦泡行为研究[J]. 材料导报, 2024, 38(1): 22030107-7.
[4] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[5] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[6] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[7] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[8] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[9] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[10] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[11] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[12] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[13] 宋学锋, 杨尔康. 石膏/偏高岭土对二次铝灰中氟离子的固化研究[J]. 材料导报, 2023, 37(7): 21090018-6.
[14] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[15] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed