Abstract: NbVMoTa refractory high entropy alloy (RHEA) powders were prepared by mechanical alloying. The effects of milling speed, milling time and alloying element Al on phase structure and morphology during mechanical alloying process were investigated. The powders were characte-rized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). The results show that the intersolubility of Nb, V, Mo and Ta element powders increases obviously by the increase of effective collision number, phase transformation energy and crystallization speed when the milling speed increases from 200 r/min to 400 r/min. Furthermore, the intersolubility of various powders improves significantly with milling time at 400 r/min. Especially, the fine NbVMoTa RHEA powders with a particle size of about 30—60 nm form a single body-centered cubic (BCC) structure after milled at 400 r/min for 100 h. In addition, the alloying progress can be accelerated by adding alloying element Al due to the formation of strong polar bonds, the orderly arrangement and the negative mixing enthalpy between Al and other component elements. The fine (NbVMoTa)88Al12 RHEA powders with single BCC structure form after milled at 400 r/min for 60 h and the powders particle size is about 40—60 nm.
常杜娟, 邓莉萍, 罗军明. 球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响[J]. 材料导报, 2023, 37(10): 21110231-5.
CHANG Dujuan, DENG Liping, LUO Junming. Effects of Ball Milling Process and Alloying Element Al on Preparation of NbVMoTa High Entropy Alloy Powders by Mechanical Alloying. Materials Reports, 2023, 37(10): 21110231-5.
1 Han Z D, Luan H W, Liu X, et al. Materials Science and Engineering:A, 2018, 712, 380. 2 Soni V, Gwalani B, Alam T, et al. Acta Materialia, 2020, 185, 89. 3 Yeh J W, Chen S J, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 4 Hung S, Wang C, Chen Y, et al. Surface and Coatings Technology, 2019, 375, 802. 5 Senkov O N, Miracle D B, Chaput K J, et al. Journal of Materials Research, 2018, 33(19), 1. 6 Xin S W, Zhang M, Yang T T, et al. Journal of Alloys and Compounds, 2018, 769, 597. 7 Han Z D, Chen N, Zhao S F, et al. Intermetallics, 2017, 84, 153. 8 Senkov O N, Wliks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698. 9 Kang B, Lee J, Ryu H J, et al. Journal of Alloys and Compounds, 2018, 767, 1012. 10 Chen G, Luo T, Shen S C, et al. Materials Reports, 2021, 35(17), 17064(in Chinese). 陈刚, 罗涛, 沈书成, 等. 材料导报, 2021, 35(17), 17064. 11 Han J, Su B, Lu J, et al. Intermetallics, 2020, 123, 106832. 12 Hong S H, Ryu H J, Kong T, et al. Journal of Materials Science & Technology, 2021, (10), 32. 13 Liu Q, Wang G, Sui X, et al. Journal of Alloys and Compounds, 2021, 865, 158592. 14 Ron A, Kim D, Nam S, et al. Journal of Alloys and Compounds, 2020, 822, 153423. 15 Das S, Robi P S. Advanced Powder Technology, 2020, 31(12), 4619. 16 Shkodich N F, Spasova M, Farle M, et al. Journal of Alloys and Compounds, 2020, 816, 152611. 17 Pan J, Dai T, Lu T, et al. Materials Science and Engineering:A, 2018, 738, 362. 18 Liu Q, Wang G, Sui X, et al. Journal of Alloys and Compounds, 2021, 865, 158592. 19 Tong Y G, Bai L H, Liang X B, et al. Journal of Alloys and Compounds, 2021, 873, 159740. 20 Juan C C, Tseng K K, Hsu W L, et al. Materials Letters, 2016, 175, 284. 21 Huang H, Wu Y, He J, et al. Advanced Materials, 2017, 29(30), 1701678. 22 Tong Y, Bai L, Liang X, et al. Intermetallics, 2020, 126, 106928. 23 Nie X W, Cai M D, Cai S. International Journal of Refractory Metals and Hard Materials, 2010, 98, 105568. 24 Bharduaj V, Zhou Q, Zhang F, et al. Tribology International, 2021, 160, 107031. 25 Duan Y Q, Lin Z Z, Song C, et al. Modern Manufacturing Technology and Equipment, 2016(8), 13(in Chinese). 段友全, 刘振振, 宋驰, 等. 现代制造技术与装备, 2016(8), 13. 26 Miracle D B, Senkov O N, Scott J M, et al. Intermetallics, 2011, 19(5), 698. 27 Zhang J, Hu Y, Wei Q, et al. Journal of Alloys and Compounds, 2020, 827, 154301. 28 Lin C, Juan C, Chang C, et al. Journal of Alloys and Compounds, 2015, 624, 100. 29 Cao Y K, Liu Y, Liu B, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(7), 1476. 30 Cao T, Shang J, Zhao J, et al. Materials Letters, 2016, 164, 344. 31 Hao W J, Sun R L, Niu W, et al. Materials Reports, 2020, 34(Z2), 330(in Chinese). 郝文俊, 孙荣禄, 牛伟, 等. 材料导报, 2020, 34(Z2), 330. 32 Senkov O N, Senkova S V, Woodward C. Acta Materialia, 2014, 68, 214. 33 Park J M, Kang J W, Lee W H, et al. Materials Letters, 2019, 255(15), 126513. 34 Bachani S K, Wang C J, Lou B S, et al. Surface and Coatings Technology, 2020, 403(7), 126351. 35 Peng H Y, Kang Z X, Li X Z, et al. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6), 513(in Chinese). 彭海燕, 康志新, 李小珍, 等. 粉末冶金材料科学与工程, 2020, 25(6), 513. 36 Bor A, Jargalsaikhan B, Uranchimeg K, et al. Powder Technology, 2021, 394, 181. 37 Duan Y, Cui Y, Zhang B, et al. Journal of Alloys and Compounds, 2019, 773, 194. 38 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817. 39 Chen Y, Hu Y, Hsieh C, et al. Journal of Alloys and Compounds, 2009, 481(1-2), 768. 40 Fathy A, Wagih A, Abu-oqail A. Ceramics International, 2019, 45(2), 2319. 41 Abu-oqail A, Wagih A, Fathy A, et al. Ceramics International, 2019, 45(5), 5866. 42 Wagih A. Advanced Powder Technology, 2015, 26(1), 253. 43 Ge S, Fu H, Zhang L, et al. Materials Science and Engineering:A, 2020, 784, 139275. 44 Liu Y Y, Chen Z, Chen Y Z, et al. Vacuum, 2019, 169, 108837.