Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22060212-15    https://doi.org/10.11896/cldb.22060212
  无机非金属及其复合材料 |
不同离子对混凝土碱硅酸反应影响的研究进展
龚青南, 王德辉*
福州大学土木工程学院,福州 350108
Research Progress on the Effects of Different Ions on Alkali-Silica Reaction of Concrete
GONG Qingnan, WANG Dehui*
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 34450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土的碱硅酸反应(Alkali-silica reaction,ASR)本质上是孔溶液中的离子、水分子与骨料中活性二氧化硅的反应。根据不同离子对ASR的影响效果,可将离子分为碱离子(Na+、K+和OH-)、锂离子和铝离子、钙离子。碱离子(Na+、K+和OH-)促进混凝土的碱硅酸反应,导致混凝土发生更严重的膨胀性破坏。Al3+和Li+减缓混凝土碱硅酸反应造成的膨胀性破坏;Ca2+起到的作用与n(Ca)/n(Si)(物质的量比)密切相关,当n(Ca)/n(Si)<0.2时,Ca2+对ASR起促进作用;当n(Ca)/n(Si)≥0.2时,Ca2+对ASR起抑制作用。本文首先介绍了ASR反应产物的最新研究进展,包括ASR产物的种类、微观形貌、原子结构及水稳定性,综述了这些离子对ASR反应过程、ASR产物组成、ASR产物结晶性能及膨胀性的影响,展望了不同离子对混凝土ASR影响的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚青南
王德辉
关键词:  碱硅酸反应  碱离子  锂离子  铝离子  钙离子  ASR产物    
Abstract: Alkali-silica reaction (ASR) of concrete is essentially the reaction of ions and water molecules in the pore solution with active silica in the aggregate. According to the influence of different ions on ASR, ions can be divided into alkali ions (Na+, K+and OH-), lithium ion and aluminum ion, calcium ion. Alkali ions promote the alkali-silica reaction of concrete, resulting in more severe expansive damage to concrete. Lithium and aluminum ions slow down the expansive damage caused by alkali-silica reaction of concrete. The role of Ca2+ is closely related to n(Ca)/n(Si) (molar ratio). When the n(Ca)/n(Si)<0.2, Ca2+ promotes ASR. When the n(Ca)/n(Si)≥0.2, Ca2+ inhibits ASR. Firstly, the latest research progresses of ASR products are introduced, including the types, micro morphology, atomic structure and water stability of ASR pro-ducts. Then, influences of these ions on the ASR process, the composition of ASR products, the crystallization properties and expansion of ASR products are reviewed. Finally, the future research direction of the influence of different ions on ASR is prospected.
Key words:  alkali-silica reaction    alkali ions    lithium ion    aluminum ion    calcium ion    ASR products
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528.04  
基金资助: 国家自然科学基金(51608187)
通讯作者:  *王德辉,博士,福州大学土木工程学院副研究员,旗山学者,国家自然科学基金委函评专家。2004年本科毕业于华北水利水电大学土木工程专业,2009年硕士毕业于中南大学土木工程材料专业,2015年博士毕业于湖南大学土木工程专业,主要从事超高性能混凝土的凝结硬化特性、石灰石粉对水泥基材料微观结构和性能的影响、腐蚀性物质在FRP筋海水海砂混凝土中的传输特性和腐蚀机理、3D打印混凝土等研究工作。作为项目负责人主持了国家重点研发计划项目子课题、国家自然科学基金青年科学基金、中国博士后科学基金面上项目、清华大学水沙科学与水利水电工程国家重点实验室开放基金、建筑安全与环境重点实验室开放基金等10余项课题。以第一作者或通信作者发表SCI论文12篇、EI论文5篇、ESI论文2篇,参编会议论文集1部。多篇SCI论文在TOP期刊成为“The Most Downloaded Article”,并得到多次引用。dhwang@fzu.edu.cn   
作者简介:  龚青南,2022年本科毕业于莆田学院土木工程专业,现为福州大学土木工程学院硕士研究生,在王德辉副教授的指导下进行研究。目前主要研究领域为混凝土的碱硅酸反应,发表1篇SCI论文和1篇北大核心兼WJCI收录论文。
引用本文:    
龚青南, 王德辉. 不同离子对混凝土碱硅酸反应影响的研究进展[J]. 材料导报, 2024, 38(2): 22060212-15.
GONG Qingnan, WANG Dehui. Research Progress on the Effects of Different Ions on Alkali-Silica Reaction of Concrete. Materials Reports, 2024, 38(2): 22060212-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060212  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22060212
1 Fanijo E O, Kolawole T J, Almakrab A. Case Studies in Construction Materials, 2021, 15, e00563.
2 Viviani H E. Australian Journal of Applied Sciences, 1951, 2, 108.
3 Hansen W C. Journal of the American Concrete Institute, 1944, 15, 213.
4 Vayghan A G, Rajabipour F, Rosenberger J L. Cement and Concrete Research, 2016, 83, 45.
5 Shi Z G, Geng G Q, Leemann A, et al. Cement and Concrete Research, 2019, 121, 58.
6 Cole W F, Lancucki C J, Sandy M J. Cement and Concrete Research, 1981, 11(3), 443.
7 Benmore C J, Monteiro P J M. Cement and Concrete Research, 2010, 40, 892.
8 Leemann A. Cement and Concrete Research, 2017, 102, 41.
9 Leemann A, Shi Z G, Lindgård J. Cement and Concrete Research, 2020, 137, 106190.
10 Shi Z G, Lothenbach B. Cement and Concrete Research, 2019, 126, 105898.
11 Shi Z G, Ma B, Lothenbach B. Cement and Concrete Research, 2021, 140, 106311.
12 Lindgård J, Andiç-Çakır Ö, Fernandes I, et al. Cement and Concrete Research, 2012, 42, 223.
13 Rajabipour F, Giannini E, Dunant C, et al. Cement and Concrete Research, 2015, 76, 130.
14 Shi Z G, Shi C J, Zhao R, et al. Materials and Structures, 2015, 48, 743.
15 Shi Z G, Park S, Lothenbach B, et al. Cement and Concrete Research, 2020, 137, 106213.
16 Honorio T, Chemgne T O M, Shi Z G, et al. Cement and Concrete Research, 2020, 136, 106155.
17 Zubkova N V, Filinchuk Y E, Pekov I V, et al. European Journal of Mineralogy, 2010, 22 (4), 547.
18 Leemann A, Shi Z G, Wyrzykowski M, et al. Materials and Design, 2020, 195, 109066.
19 Geng G Q, Shi Z G, Leemann A, et al. Cement and Concrete Research, 2020, 129, 105958.
20 Rjp A, Ft B, Nph C, et al. Cement and Concrete Research, 2019, 123, 105774
21 Wei S H, Zheng K, Zhou J, et al. Cement and Concrete Research, 2022, 154, 106723.
22 Ichikawa T, Miura M. Cement and Concrete Research, 2007, 37, 1291.
23 Nguyen T N, Sanchez L F M, Li J C, et al. Cement and Concrete Composites, 2022, 134, 104817.
24 Bruno G, Mario D R, Jonathan W. Guide to diagnosis and appraisal of AAR damage to concrete in structures, Springer, England, 2013, pp. 13.
25 Kasaniya M, Thomas M D A. Cement and Concrete Research, 2022, 162, 107007.
26 Bazant Z P, Steffens A. Cement and Concrete Research, 2000, 30, 419.
27 Poole A B. In:9th International Conference on Alkali-Silica Reaction. England, 1992, pp. 782.
28 Hobbs D W. Alkali-silica reaction in concrete, ICE Virtual Library, England, 1988, pp. 56.
29 Lu D Y, Mei L B, Xu Z Z, et al. Cement and Concrete Research, 2006, 36, 1176.
30 Marshall W L, Warakomski J M. Geochim Cosmochim Acta, 1980, 44, 915.
31 Lu D Y, Mei L B, Xu Z Z, et al. Cement and Concrete Research, 2006, 36, 1191.
32 Strack C M, Barnes E, Ramsey M A, et al. Construction and Building Materials, 2020, 240, 117929.
33 Peterson K, Gress D, Dam T V, et al. Cement and Concrete Research, 2006, 36, 1523.
34 Shi Z G, Lothenbach B. Cement and Concrete Research, 2020, 127, 105914.
35 Chen G X, Cai Y B, Wang S J, et al. Test code for hydraulic concrete, China Water & Power Press, China, 2020, pp. 69 (in Chinese).
陈改新, 蔡跃波, 王少江, 等. 水工混凝土试验规程, 中国水利水电出版社, 2020, pp. 69.
36 Shon C S, Zollinger D G, Sarkar S L. Cement and Concrete Research, 2002, 32, 1981.
37 Leemann A, Lothenbach B. Cement and Concrete Research, 2008, 38, 1162.
38 McCoy W J, Caldwell A G. Journal of American Concrete Institute, 1951, 22, 693.
39 Feng X, Thomas M D A, Bremner T W, et al. Cement and Concrete Research, 2010, 40, 94.
40 Leemann A, Lörtscher L, Bernard L, et al. Cement and Concrete Research, 2014, 59, 73.
41 Mitchell L D, Beaudoin J J, Grattan-Bellew P. Cement and Concrete Research, 2004, 34, 641.
42 Guo S C, Dai Q G, Si R Z. Cement and Concrete Research, 2019, 115, 220.
43 Mo X Y, Yu C, Xu Z. Cement and Concrete Research, 2003, 33, 115.
44 Diamond S, Ong S. In:Conference Record of the 9th International Conference on Alkali-Aggregate Reaction in Concrete. England, 1992, pp. 269.
45 Prezzi M, Monteiro P J M, Sposito G. ACI Materials Journal, 1998, 95, 3.
46 Zapała-Sławeta J, Owsiak Z. Construction and Building Materials, 2016, 115, 299.
47 Diamond S. Cement and Concrete Research, 1999, 29, 1271.
48 Thomas M, Hooper R, Stokes D. In:Conference Record of 11th International Conference on Alkali-Aggregate Reaction in Concrete. Canada, 2000, pp. 1283.
49 Stark D C. In:Conference Record of 9th International Conference on Alkali-Aggregate Reaction in Concrete. England, 1992, pp. 1017.
50 Deng Z M. Construction and Building Materials, 2022, 315, 125433.
51 Lumley J S. Cement and Concrete Research, 1997, 27, 235.
52 Collins C L, Ideker J H, Willis G S, et al. Cement and Concrete Research, 2004, 34, 1403.
53 Feng X, Thomas M D A, Bremner T W, et al. Cement and Concrete Research, 2005, 35, 1789.
54 Moser R D, Jayapalan A R, Garas V Y, et al. Cement and Concrete Research, 2010, 40, 1664.
55 Kandasamy S, Shehata M H. Cement and Concrete Composites, 2014, 49, 92.
56 Ramlochan T, Thomas M D A, Hooton R D, et al. Cement and Concrete Research, 2004, 34, 1341.
57 Li F H, Zhang G B, Zhou H Y, et al. Journal of Building Materials, 2017, 20(6), 5 (in Chinese).
李福海, 张桂斌, 周鸿屹, 等. 建筑材料学报, 2017, 20(6), 5.
58 Feng X X, Feng N Q. Journal of the Chinese Ceramic Society, 2002, 30(6), 6 (in Chinese).
封孝信, 冯乃谦. 硅酸盐学报, 2002, 30(6), 6.
59 Yu Y, Li G Z. Journal of Building Materials, 2008, 11(4), 475 (in Chinese).
于洋, 李国忠. 建筑材料学报, 2008, 11(4), 475.
60 Aquino W, Lange D A, Olek J. Cement and Concrete Composites, 2001, 23(6), 485.
61 Saha A K, Khan M N N, Sarker P K, et al. Construction and Building Materials, 2018, 171, 743.
62 Hong S Y, Glasser F P. Cement and Concrete Research, 2002, 32(7), 1101.
63 Komarneni S, Roy D M, Roy R. Cement and Concrete Research, 1982, 12(6), 773.
64 Komarmneni S, Roy D M. Science, 1983, 221(4611), 647.
65 Chappex T, Scrivener K L. Cement and Concrete Research, 2012, 42(12), 1645.
66 Chappex T, Scrivener K L. Journal of the American Ceramic Society, 2013, 96(2), 592.
67 Leemann A, Laetitia B, Salaheddine A, et al. Cement and Concrete Research, 2015, 76, 192.
68 Xu H Z. Journal of Building Materials, 2000, 3(3), 213 (in Chinese).
徐惠忠. 建筑材料学报, 2000, 3(3), 213.
69 Marfil S A, Maiza P J. Cement and Concrete Research, 1993, 23(6), 1283.
70 Shi Z G, Bin M, Barbara L. Cement and Concrete Research, 2021, 140, 106311.
71 Struble L, Diamond S. Cement and Concrete Research, 1981, 11, 611.
72 Struble L J, Diamond S. Journal of the American Ceramic Society, 1981, 64, 652.
73 Cong X D, Kirkpatrick R J, Diamond S. Cement and Concrete Research, 1993, 23, 811.
74 Chatterji S. Cement and Concrete Research, 1979, 9, 185.
75 Chatterji S, Jensen A D, Thaulow N, et al. Cement and Concrete Research, 1986, 16, 246.
76 Wang H, Gillott J E. Cement and Concrete Research, 1991, 21, 647.
77 Oey T, Plante E, Falzone G, et al. Cement and Concrete Composites, 2020, 110, 103592.
78 Monteiro P J M, Wang K, Sposito G, et al. Cement and Concrete Research, 1997, 27, 1899.
79 Zhang C, Wang A. Journal of Wuhan University of Technology, 2008, 23(1), 16.
80 Kawamura M, Iwahori K. Cement and Concrete Composites, 2004, 26(1), 47.
81 Powers T C, Steinour H H. Journal of American Concrete Institution, 1955, 26 (6), 497.
82 Geng G Q, Shi Z G, Leemann A, et al. Cement and Concrete Research, 2020, 129, 105958.
83 Powers T C. Steinour H H. Journal of American Concrete Institution, 1955, 51(26), 497.
84 Mo X Y, Lu D Y, Xu Z Z. Journal of Nanjing University of Chemical Technology, 2000, 22(3), 72 (in Chinese).
莫祥银, 卢都友, 许仲梓. 南京化工大学学报, 2000, 22(3), 72.
[1] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[2] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[3] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[4] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[5] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[6] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[7] 张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
[8] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[9] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[10] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[11] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[12] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[13] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[14] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[15] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed