Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21100032-9    https://doi.org/10.11896/cldb.21100032
  无机非金属及其复合材料 |
钢渣胶凝活性与体积稳定性优化研究现状
王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章
北京工业大学材料与制造学部新型功能材料教育部重点实验室,北京 100124
Research Status of Improving Cementitious Activity and Volume Stability of Steel Slag
WANG Jianfeng, CHANG Lei, WANG Yan, LIU Hui, YUE Deyu, CUI Suping, LAN Mingzhang
Key Laboratory of Advanced Functional Materials, Ministry of Education,Facaulty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着粗钢产量的逐年递增,我国钢渣累积存放量也不断上升,将钢渣用作辅助胶凝材料是提高钢渣综合利用率、降低水泥混凝土行业碳排放的有效措施。然而,钢渣存在的胶凝组分含量少且活性低、膨胀组分含量较高等问题限制了其在水泥和混凝土中的应用。
目前,用于改善钢渣胶凝活性与体积稳定性的方法主要有机械粉磨、高温活化、碱活化、酸活化、有机物活化及碳化活化等。机械粉磨主要通过物理方式破坏钢渣晶体结构、减小颗粒粒径,但其能耗较高且仅对早期强度有利。高温活化主要包括高温养护和高温调质/重构:高温养护通过改变钢渣水化所处的外界环境促进水化,但较高温度会使钙矾石分解并引入孔洞;高温调质/重构工艺直接改变了钢渣的矿物组成,但存在能耗高和匀质性差的问题。碱活化可以促进离子溶出并消耗氢氧化钙,但存在碱骨料反应和泛碱等问题。酸活化也可以促进离子溶出,增大钢渣比表面积,但过量酸会消耗钢渣中活性组分。有机物活化中,醇胺可以通过络合作用促进离子溶出,但不同分子结构的醇胺作用机理仍不明确。碳化活化通过钙镁矿物与CO2反应形成碳酸盐填充孔隙,但CO2向试块内部的扩散阻力使内外碳化程度不均匀。
通过钢渣的来源和组成,分析钢渣活性低和体积稳定性差的原因,归纳目前常见的改善钢渣胶凝活性和体积稳定性的方法,指出各方法目前面临的困境并作出展望,以期为钢渣性能的进一步优化和在水泥混凝土工业中的进一步应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王剑锋
常磊
王艳
刘辉
岳德钰
崔素萍
兰明章
关键词:  钢渣  组成  胶凝活性  体积稳定性  有机活化    
Abstract: With the yearly increase of crude steel production, the accumulated storage volume of steel slag in China is also rising, and the use of steel slag as supplementary cementitious material is an effective measure to improve the comprehensive utilization rate of steel slag and reduce the carbon emission of cement and concrete industry. However, steel slag has problems such as low content and low activity of the cementitious component and high content of swelling components, which limit its application in cement and concrete. At present,many methods are used to improve the cementitious activity and volume stability of steel slag, including mechanical grinding activation, high temperature activation, acid activation, alkali activation, organic activation and carbonization activation. Mechanical grinding activation mainly through the physical way to break the steel slag crystal structure and reduce the particle size, but it has high energy consumption and only for the early strength benefit. High temperature activation mainly includes high temperature curing and high temperature reconstruction. High temperature curing promotes hydration by changing the external environment in which the steel slag is hydrated, but the higher temperature will cause the decomposition of ettringite and introduce pores. High temperature reconstruction process directly changes the mineral composition of the steel slag, but there are problems such as high energy consumption and poor homogeneity. Alkali activation can promote ion dissolution and consume calcium hydroxide, but there are problems such as alkali aggregate reaction and efforescence. Acid activation can promote ion dissolution and increase the specific surface area of steel slag, but it will react with the active components in steel slag. In organic activation, alkanolamines can promote ion dissolution through complexation, but the mechanism of action of alkanolamines with different molecular structures is still unclear. Carbonation fills the pores through the reaction of calcium and magnesium minerals with CO2 to form carbonates as microaggregates, but the presence of CO2 diffusion resistance to the interior of the specimen will make the carbonation degree uneven inside and outside. This paper analyzes the reasons of low activity and poor volume stability of steel slag from the source and composition of steel slag, summarizes the common methods for improving the cementitious activity and volume stability of steel slag, points out the current dilemmas faced by various methods and makes certain outlooks, in order to provide references for further optimization of steel slag properties and promote the further application of steel slag in the cement and concrete industry.
Key words:  steel slag    compositions    cementitious reactivity    volume stability    organic activation
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TU528  
基金资助: 北京市自然科学基金-市教委联合资助项目(KZ202010005013);国家自然科学基金(51504013)
通讯作者:  兰明章,通信作者,北京工业大学材料与制造学部教授级高工、博士研究生导师。1986年哈尔滨建筑工程学院本科毕业,1989年武汉工业大学北京研究生部硕士毕业后在武汉工业大学北京研究生部任教,2008年中国建筑材料科学研究总院材料学博士毕业。2000年至今,北京工业大学材料学院任教。目前主要从事水泥生产工艺技术、水泥性能及应用等方面的工作。   
作者简介:  王剑锋,北京工业大学材料与制造学部副教授、硕士研究生导师。2007年中国矿业大学(北京)化学工程与工艺本科毕业,2013年中国矿业大学(北京)应用化学工学博士毕业;2013年至今,北京工业大学材料与制造学部任教。目前主要从事绿色高性能水泥基材料及化学外加剂精细合成、固体废弃物资源化利用等方面的研究工作。
引用本文:    
王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
WANG Jianfeng, CHANG Lei, WANG Yan, LIU Hui, YUE Deyu, CUI Suping, LAN Mingzhang. Research Status of Improving Cementitious Activity and Volume Stability of Steel Slag. Materials Reports, 2023, 37(11): 21100032-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100032  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21100032
1 The National People's Congress of the People's Republic of China. The 14th five year plan for national economic and social development of the People's Republic of China and the outline of long-term objectives for 2035, People’s Publishing House, China, 2021(in Chinese).
中华人民共和国全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要, 人民出版社, 2021.
2 Huang X H, Wu H, Lu D Y. Journal of Hazardous Materials, 2020, 403, 124042.
3 Long W Q, Wang S S, Lu C Y, et al. Journal of Cleaner Production, 2020, 273, 123163.
4 Jing W, Jiang J P, Ding S, et al. Molecules, 2020, 25(19), 4456.
5 Feng J J, Sun J W. Construction and Building Materials, 2020, 234, 116948.
6 Zhuang S Y, Wang Q. Cement and Concrete Research, 2021, 140, 106283.
7 Jia R Q, Liu J X. Cement and Concrete Research, 2017, 91, 123.
8 Wang Y, Suraneni P. Construction and Building Materials, 2019, 204(20), 458.
9 Yildirim I Z, Prezzi M, et al. Advances in Civil Engineering, 2011, 2011, 463638.
10 Liao Y S, Jiang G X, Wang K J, et al. Construction and Building Mate-rials, 2020, 265, 120301.
11 Piemonti A, Conforti A, Cominoli L, et al. Sustainability, 2021, 13, 556.
12 Guo J L, Bao Y P, Wang M. Waste Management, 2018, 78, 318.
13 Han F, Zhang Z, Wang D, et al. Thermochimica Acta, 2015, 605, 43.
14 Saly F, Guo L P, Ma R, et al. Journal of Wuhan University of Technology, 2018, 33(6), 1444.
15 Zang J, Li W F, Shen X D. Ceramics Silikáty, 2019, 63(1), 67.
16 Gao T M, Dai T, Shen L, et al. Journal of Cleaner Production, 2020, 282, 124538.
17 Zhang N, Wu L, Liu X, et al. Construction and Building Materials, 2019, 219, 11.
18 Rooholamini H, Sedghi R, Ghobadipour B, et al. Construction and Buil-ding Materials, 2019, 211, 88.
19 Lu X, Dai W, Liu X, et al. Metallurgical Research and Technology, 2019, 116, 2.
20 Cˇenovar M, Traven K, Horvat B, et al. Materials, 2019, 12(7), 1173.
21 Tsakiridis P E, Papadimitriou G D, Tsivilis S, et al. Journal of Hazar-dous Materials, 2008, 152(2), 805.
22 Singh S K, Jyoti, Vashistha P. Construction and Building Materials, 2021, 268, 121147.
23 Montenegro-Cooper J M, Celemin-Matachana M, Canizal J, et al. Construction and Building Materials, 2019, 203, 201.
24 Xu B, Yi Y L. Science of The Total Environment, 2019, 705, 135854.
25 Gollapalli V, Tadivaka S R, Borra C R, et al. Journal of Sustainable Metallurgy, 2020, 6(1), 121.
26 Aponte D, Martín O S, Barrio S V, et al. Minerals, 2020, 10(8), 687.
27 Tang M S, Yuan M X, Han S F, et al. Journal of Thermal Analysis and Calorimetry, 1979(1), 35(in Chinese).
唐明述, 袁美栖, 韩苏芬, 等. 硅酸盐学报, 1979, 1, 35.
28 Xiang X D, Xi J C, Li C H, et al. Construction and Building Materials, 2016 , 114, 874.
29 Wang Q, Yan P Y, Feng J W. Journal of Hazardous Materials, 2011, 186, 1070.
30 BrandA S, Roesler J R. Cement and Concrete Composites, 2018, 86, 117.
31 Mehta P K, Monteiro P J M. Concrete microstructure, properties and materials, McGraw-Hill Company, America, 2006.
32 Ye G X. Divalent Oxide in steel slag and its relationship with volume stabi-lity of steel slag cement, China Architecture and Building Press, China, 1980(in Chinese).
叶贡欣. 钢渣中二价氧化物相及其与钢渣水泥体积安定性的关系, 中国建筑工业出版社, 1980.
33 Chen Z M, Li R, Zheng X M, et al. Cement and Concrete Research, 2021, 139, 106271.
34 Jiang Y, Ling T C, Shi A C, et al. Resources, Conservation and Recycling, 2018, 136, 187.
35 Kriskova L, Pontikes Y, Cizer ?, et al. Cement and Concrete Research, 2012, 42(6), 778.
36 Liu S H, Li L H, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(2), 629.
37 Duan S Y, Liao H Q, Song H P, et al. Construction and Building Materials, 2019, 212, 140.
38 Wang Q, Shi M X, Yang J, et al. Construction and Building Materials, 2016, 123, 601.
39 Zhu X, Hou H B, Huang X Q, et al. Construction and Building Mate-rials, 2012, 29, 476.
40 Zhou S X, Zhang M L. Introduction to powder engineering, Science Press, China, 2010.
周仕学, 张鸣林. 粉体工程导论, 科学出版社, 2010.
41 Ludwig H M, Zhang W S. Cement and Concrete Research, 2015, 78, 24.
42 Mishra R K, Flatt R J, Heinz H. Journal of Physical Chemistry C, 2013, 117(20), 10417.
43 Cui X W, Leng X Y, Nan N, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3821(in Chinese).
崔孝炜, 冷欣燕, 南宁, 等. 硅酸盐通报, 2018, 37(12), 3821.
44 Li L L, Zhao F Q, Liu S J. Advanced Materials Research, 2014, 884-885, 702.
45 Liu Q, Liu J X, Qi L Q. Construction and Building Materials, 2016, 124, 999.
46 Song X F, Cui H L, Yang E K, et al. Transactions of Materials and Heat Treatment, 2020, 41(5), 140(in Chinese).
宋学锋, 崔贺龙, 杨尔康, 等. 材料热处理学报, 2020, 41(5), 140.
47 Zheng C H, Ma Y W, Liu G Z, et al. Bulletin of the Chinese Ceramic Society, 2020,39(11),3557.
郑翠红, 马彦伟, 刘国忠, 等. 硅酸盐通报, 2020, 39(11), 3557.
21100032-848 Zhao Q L, Stark J, Freyburg E, et al. Advanced Materials Research, 2012, 356-360, 1919.
49 Gong C C, Yu Q J, Wei J X. Journal of Thermal Analysis and Calorimetry, 2010, 38(11), 2193(in Chinese).
宫晨琛, 余其俊, 韦江雄. 硅酸盐学报, 2010, 38(11), 2193.
50 Rao L, Wu L S, Zhou Y, et al. Steelmaking, 2017, 33(6), 73(in Chinese).
饶磊, 吴六顺, 周云, 等. 炼钢, 2017, 33(6), 73.
51 Liu S Y, Wang Z J, Peng B, et al. Chinese Journal of Engineering, 2018, 40(5), 557(in Chinese).
刘仕业, 王占军, 彭犇, 等. 工程科学学报, 2018, 40(5), 557.
52 Zhang Z S, Lian F, Ma L J, et al. Journal of Iron and Steel Research(International), 2015, 22(1), 15.
53 Sun J, Chen Z. Journal of Thermal Analysis and Calorimetry, 2019, 138(1), 47.
54 Kriskova L, Pontikes Y, Zhang F, et al. Cement and Concrete Research, 2014, 55, 59.
55 Liu Z, Zhang D W, Li L, et al. Construction and Building Materials, 2019, 204, 158.
56 Zhang L, Chen B. Journal of Materials in Civil Engineering, 2017, 29(9), 04017091.
57 Wang Z, Sun Y, Zhang S, et al. RSC Advances, 2019, 9(18), 9993.
58 Salman M, Cizer ?, Pontikes Y, et al. Journal of Hazardous Materials, 2015, 286, 211.
59 Nikolic I, Drincic A, Djurovic D, et al. Construction and Building Materials, 2016, 108, 1.
60 Dang Y F, Li X G. China Powder Science and Technology, 2006(5), 16(in Chinese).
党永发, 李晓光.中国粉体技术, 2006(5), 16.
61 Zhang H, Long H M, Yang G, et al. The Chinese Journal of Process Engineering, 2017, 17(4), 810(in Chinese).
张浩, 龙红明, 杨刚, 等. 过程工程学报, 2017, 17(4), 810.
62 Zhu B R, Yang Q B, Yao D W, et al. Journal of Tongji University(Natural Science), 2009, 37(10), 1375(in Chinese).
朱蓓蓉, 杨全兵, 姚冬晚, 等. 同济大学学报(自然科学版), 2009, 37(10), 1375.
63 Chen L, Liu B G, Zhang L B, et al. Iron Steel Vanadium Titanium, 2017, 38(6), 74(in Chinese).
陈林, 刘秉国, 张利波, 等. 钢铁钒钛, 2017, 38(6), 74.
64 Zhang H, Zhang X Y, Long H M. Spectroscopy and Spectral Analysis, 2018, 38(11), 3502(in Chinese).
张浩, 张欣雨, 龙红明. 光谱学与光谱分析, 2018, 38(11), 3502.
65 Huo B B, Li B L, Huang S, et al. Construction and Building Materials, 2020, 254, 119319.
66 Huo B B, Li B L, Luo Y L, et al. Journal of Building Materials, 2022, 25(6), 591 (in Chinese).
霍彬彬, 李保亮, 罗阳林, 等. 建筑材料学报, 2022, 25(6), 591.
67 Huo B B, Li BL, Chen C, et al. Construction and Building Materials, 2021, 280, 122500.
68 Huo B B, Li B L, Chen C, et al. Journal of Thermal Analysis and Calorimetry, 2021, 49(5), 948(in Chinese).
霍彬彬, 李保亮, 陈春, 等. 硅酸盐学报, 2021, 49(5), 948.
69 Pan Z Y, Wang S, Liu Y C, et al. Journal of Cleaner Production, 2019, 235 (20), 866.
70 Wang X L, Wang J F, Yang S G, et al. Journal of Thermal Analysis and Calorimetry, 2017, 45(2), 206(in Chinese).
王雪莉, 王剑锋, 杨松格, 等. 硅酸盐学报, 2017, 45(2), 206.
71 Yang S G, Wang J F, Cui S P, et al. Construction and Building Mate-rials, 2017, 131(30), 655.
72 Xu Z Q, Li W F, Sun J F, et al. Construction and Building Materials, 2017, 141, 296.
73 Xu Z Q, Li W F, Sun J F, et al. Journal of Thermal Analysis and Calorimetry, 2018, 131, 37.
74 Cui S P, Yang S G, Wang J F, et al. Journal of Beijing University of Technology, 2016, 42(7), 1108(in Chinese).
崔素萍, 杨松格, 王剑锋, 等. 北京工业大学学报, 2016, 42(7), 1108.
75 Gartner E, David M. Journal of the American Ceramic Society, 1993, 76(6), 1521.
76 Lu Z C, Kong X M, Jansen D, et al. Cement and Concrete Research, 2020, 132, 106041.
77 Ramachandran V S. Cement and Concrete Research, 1973, 3(1), 41.
78 Ramachandran V S. Cement and Concrete Research, 1976, 6, 623.
79 Yaphary Y L, Yu Z C, Lam R H W. Construction and Building Mate-rials, 2017, 141, 94.
80 Ma S H, Li W F, Zhang S B, et al. Cement and Concrete Research, 2015, 67, 122.
81 Lu X L, Ye Z M, Zhang L, et al. Construction and Building Materials, 2017, 135, 484.
82 Ramachandran V S. Journal of Applied Chemistry and Biotechnology, 1972, 22, 1125.
83 Zhang Y R, Kong X M, Lu Z C, et al. Cement and Concrete Research, 2016, 87, 64.
84 Wang J, Kong X M, Yin J H, et al. Cement and Concrete Research, 2020, 138, 10625.
85 Zhang Y R,Gao L, Cai X P, et al. Construction and Building Materials, 2020, 238, 117670.
86 Ma B G, Xu Y H, Dong R Z. Journal of Building Materials, 2006, 9(1), 6(in Chinese).
马保国, 许永和, 董荣珍. 建筑材料学报, 2006, 9(1), 6.
87 Zhang T, Ma B G, Tan H B, et al. Journal of Environmental Management, 2020, 276, 111274.
88 Wang J, Ma B G, Ti H B, et al. Construction and Building Materials, 2021, 266, 121068.
89 Liu H, Wang J F, Wang J C,et al. Advances in Cement Research, 2018, 32(5), 234.
90 Ma S H, Li W F, Shen X D. Construction and Building Materials, 2019, 213, 617.
91 Chang J, Wu H Z. Journal of the Chinese Ceramic Society, 2010, 38(7), 1185(in Chinese).
常钧, 吴昊泽. 硅酸盐学报, 2010, 38(7), 1185.
92 Liu G, Schollbach K, Li P, et al. Construction and Building Materials, 2021, 280, 122580.
93 Hou G, Yan Z, Sun J, et al. Construction and Building Materials, 2020, 271(9), 121581.
94 Mahoutian M, Ghouleh Z, Shao Y X. Construction and Building Mate-rials, 2014, (66),214.
95 Hu Z, Guan Y, Chang J, et al. Materials, 2020, 13(21), 5006.
96 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research, 2014, 56(10), 153.
97 Wang D, Chang J, Ansari W S. Journal of CO2 Utilization, 2019, 34, 87.
98 Zeng H M, Liu Z C, Wang F Z. Journal of the Chinese Ceramic Society, 2020, 48(11), 1801 (in Chinese).
曾海马, 刘志超, 王发洲. 硅酸盐学报, 2020, 48(11), 1801.
99 Ye J Y, Zhang W S, Shi D, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1582 (in Chinese).
叶家元, 张文生, 史迪, 等. 硅酸盐学报, 2019, 47(11), 1582.
100 Yang S, Mo L W, Deng M. Cement and Concrete Composites, 2021, 118, 102948.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[3] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[4] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[5] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[6] 柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
[7] 王慧鹏, 李鹏, 江聪, 朱兴高, 赵运才. 国内自润滑关节轴承试验机研制现状及展望[J]. 材料导报, 2022, 36(Z1): 22030131-4.
[8] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[9] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[10] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[11] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[12] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[15] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed