Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14096-14100    https://doi.org/10.11896/cldb.20050148
  金属与金属基复合材料 |
TC4合金微动磨损部分滑移区摩擦参数的演变
何燕妮1, 俞树荣1,*, 李淑欣2, 尘强1
1 兰州理工大学石油化工学院, 兰州 730050
2 宁波大学机械工程与力学学院, 宁波 315211
Evolution of Tribological Characteristics of TC4 Alloy in Fretting Wear Partial Slip Regime
HE Yanni1, YU Shurong1,*, LI Shuxin2, CHEN Qiang1
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 7432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取三种硬度对偶件(HV680GCr15、HV1500Si3N4和HV2300Al2O3)为变量,研究TC4合金在室温和高温下微动磨损部分滑移区摩擦特性参数的演变。试验结果表明,在三种硬度对偶件配合下,TC4合金在室温和高温下的微动磨损均处于典型部分滑移区,未发生向其他两区域的转变。对偶件硬度对部分滑移区摩擦特性参数的影响较为显著:对偶件硬度对表面损伤的影响最为突出,磨痕表面由清晰可辨的黏着与微滑两区逐渐转变为黏着、微滑以及严重塑性变形的环状过渡区,表面轮廓由凹凸峰曲线转变为中心明显凹坑、边缘较为粗糙的规则“U”型斑;对偶件硬度对损伤机制的影响较小,由黏着磨损逐渐过渡到氧化伴随黏着磨损;对偶件硬度对摩擦系数几乎不产生影响,曲线变化规律,稳定值基本相同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何燕妮
俞树荣
李淑欣
尘强
关键词:  TC4合金  微动磨损  部分滑移区  硬度  摩擦特性参数    
Abstract: Three kinds of hardness counter-bodies(HV680GCr15,HV1500Si3N4 and HV2300Al2O3) were selected as variables to study the evolution of tribological characteristics of TC4 titanium alloy in fretting partial slip regime at room and elevated temperatures. The test results showed that under the three pairs, fretting wear of TC4 alloy were in the typical partial slip region at room and elevated temperature, and no transition to other two regions occurred. The tribological characteristics in partial slip regime were affected by the hardness of counter-bodies significantly: the effect on the degradation of worn surface was the most critical, the morphologies of worn scars were varied from a clearly distinguishable adhesive and slightly slippery zone to a circular intersection with severe plastic deformation generated newly; the profiles were transformed from a concave-convex peak curve to a regular “U”-shape with a sharp center and rough edges. The influence on damage mechanisms was minor, gradually transitions from adhesive to oxidation and adhesive wear. The effect on coefficient of friction was almost negligible, the curve evolved regularly, and the stability values was basically the same.
Key words:  TC4 alloy    fretting wear    partial slip regime    hardness    tribological characteristics
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG117.1  
基金资助: 国家自然科学基金(51275225)
通讯作者:  * yusr@lut.cn   
作者简介:  何燕妮,女,2004年9月—2008年6月,在宁夏大学获得过程装备与控制工程专业工学学士学位,2009年9月—2012年6月,在兰州理工大学获得安全技术及工程专业硕士学位,2014年至今,在兰州理工大学石油化工学院化工过程机械专业过程可靠性及风险评价技术方向攻读博士学位。硕士期间在国内外学术期刊上发表论文2篇,其中在Corrosion Science上发表论文1篇,同时获得兰州理工大学“优秀研究生”称号;研究工作主要围绕航空发动机叶片材料的损伤,开展关于钛合金TC4微动磨损和微动疲劳方面的研究,参与发表论文5篇。
俞树荣,现任兰州理工大学党委常委,副校长,工学博士,教授,博士研究生导师。甘肃省第一层次领军人才。《化工机械》《流体机械》《石油化工设备》《石化技术与应用》《管道技术与设备》《兰州理工大学学报》杂志编委。先后主持1项、参加了4项国家自然科学基金项目的研究工作,主持完成了60多项省部级科学研究项目和企业技术难题攻关项目,获省部级奖多项。发表研究论文100多篇,主编、参编专著5部。
引用本文:    
何燕妮, 俞树荣, 李淑欣, 尘强. TC4合金微动磨损部分滑移区摩擦参数的演变[J]. 材料导报, 2021, 35(14): 14096-14100.
HE Yanni, YU Shurong, LI Shuxin, CHEN Qiang. Evolution of Tribological Characteristics of TC4 Alloy in Fretting Wear Partial Slip Regime. Materials Reports, 2021, 35(14): 14096-14100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050148  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14096
1 Hager J C H, Sanders J H, Sharma S. Wear, 2006,260(4-5),493.
2 Nurmi V, Hintikka J, Jouksukangas J,et al. Tribology International, 2019,131,258.
3 Budinski K G. Wear, 1991,151(2), 203.
4 Bahadur S, Chiennan Y. Wear,1996,196(1-2),156.
5 Nowell D, Dini D, Hills D A. Engineering Fracture Mechanics, 2006,73(2),207.
6 Vingsbo O, Soderberg S. Wear, 1988,126(2),131.
7 Zhu M, Zhou Z. Tribology International, 2011,44(11),1378.
8 Ren P D, Chen G X, Zhou Z R. Tribology, 2003,23(4),331(in Chinese).
任平弟,陈光雄,周仲荣.摩擦学学报, 2003,23(4),331.
9 Li H Y, Liu H W, Zhou Z R. China Mechanical Technology, 2003,14(11),985(in Chinese).
李红岩,刘捍卫,周仲荣.中国机械工程, 2003,14(11),985.
10 Liu H W, Qiu S Y, Zhu M H, et al. Nuclear Power Engineering, 2005,26(4),393.
11 Hintikka J, Lehtovaara A, Mantyla A.Tribology International, 2016,94,633.
12 Mulvihill D M, Kartal M E, Olver A V, et al. Wear, 2011,271(5-6),802.
13 Blanchard P, Colombie C, Pellerin V, et al. Metallurgical and Materials Transactions A, 1991,22(7),1535.
14 Straffelini G, Molinari A. Wear, 1999,236(1-2),328.
15 Shi C X, Zhong Q P,Li C G. China materials engineering canon Vol.1, Chemical Industry Press, China,2006(in Chinese).
师昌绪, 钟群鹏, 李成功.中国材料大典(第1卷),化工出版社,2006.
16 Doris K W. Wear, 1996, 200(1-2),8.
17 Waesche R, Hartelt M, Weihnacht V.Wear, 2009,267,2208.
18 Rasool G, Stack M M. Tribology International, 2015,91,258.
[1] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[2] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[3] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[4] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[5] 王蒙, 张冠星, 钟素娟, 程战, 李文彬. Mg对Sn-0.7Cu钎料组织及性能的影响[J]. 材料导报, 2021, 35(10): 10147-10151.
[6] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[7] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[8] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[9] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[10] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[11] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[12] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[13] 孔焕平, 姜涛, 刘昌奎, 应少军, 赵凯. 多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究[J]. 材料导报, 2020, 34(14): 14134-14139.
[14] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[15] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed