Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13058-13067    https://doi.org/10.11896/cldb.19060032
  无机非金属及其复合材料 |
轻合金-空气电池的研究进展
姚万鹏1, 曹福勇2, 李焰1, 齐建涛3
1 中国石油大学(华东)材料科学与工程学院,青岛 266580
2 厦门大学材料学院,厦门 361005
3 中国石油大学(华东)化学工程学院,青岛 266580
Research Progress on Light Alloy-Air Batteries
YAO Wanpeng1, CAO Fuyong2, LI Yan1, QI Jiantao3
1 College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 College of Materials, Xiamen University, Xiamen 361005, China
3 College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
下载:  全 文 ( PDF ) ( 5532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属-空气电池作为一种新的能源形式,因理论能量密度高、价格低廉、安全性好、使用温度范围广等优势,具有广阔的应用前景。目前研究较多的金属-空气电池包括锌-空气电池、铝-空气电池、锂-空气电池、镁-空气电池四类。
轻合金-空气电池以能量密度高的轻合金材料作为电池负极,以空气电极作为正极,以碱性或中性盐溶液为电解液,主要包括铝-空气电池和镁-空气电池两种。铝、镁金属电化学容量高、成本低廉、储量丰富,是金属-空气电池中优秀的阳极候选材料,作为储能材料也成为化石燃料的有力替代者。然而,研究初期直接应用纯铝、纯镁的金属-空气电池性能表现不佳,存在诸多问题。随着铝合金及镁合金的发展,轻合金在金属-空气电池中的应用大大改善了金属负极的自腐蚀问题,提高了电极的放电活性,使电池整体性能表现更加优良。在铝-空气电池中,掺杂Sn、In、Ga、Mg等元素的铝合金电极腐蚀速率降低,阳极利用率提高,电极表面的钝化膜被破坏而实现活化效果;在镁空气电池中,Al、Zn、Mn、Li等合金元素提高了镁合金电极的耐腐蚀性能,电池的放电容量也有所提高。一些稀土元素的添加可以细化轻合金的晶粒,起到变质作用,轻合金电极的腐蚀及钝化问题均得到改善。
本文介绍了金属-空气电池的基本原理,对两类轻合金-空气电池的性能表现进行了阐述,对金属-空气电池中目前存在的主要问题进行了分析归纳并简要介绍了其解决方案。主要聚焦在电池负极的合金化方式及各类轻合金在电池中的性能表现,并对轻合金-空气电池中的腐蚀原因及控制措施进行了总结展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚万鹏
曹福勇
李焰
齐建涛
关键词:  轻合金  空气电池  合金化  腐蚀控制    
Abstract: As a new form of energy, metal-air batteries have the advantages of high theoretical energy density, low price, good safety, wide range of temperature and so on. At present, there are four types of metal-air batteries which are popular and widely studied, including zinc-air battery, aluminum-air battery, lithium-air battery and magnesium-air battery.
Light alloy-air batteries use light alloy material with high energy density as anode, air electrode as cathode, alkaline or neutral salt solution as electrolyte, mainly including aluminum-air battery and magnesium-air battery. Aluminum and magnesium with high electrochemical capacity, low cost and abundant reserves are excellent candidate anode materials for metal-air batteries and regarded as a promising alternative to fossil fuels as an energy storage material. However, the performance of metal-air batteries using pure aluminum and pure magnesium is not good as expected at the beginning with enormous study problems. With the development of aluminum alloys and magnesium alloys, the application of light alloys in metal-air batteries greatly reduces the self-corrosion problem of metal anodes, improves the discharge activity of electrode and the overall performance of battery is significantly enhanced. For aluminum-air battery, the corrosion rate of the aluminum alloy electrode decreases due to the doping of Sn, In, Ga, Mg and other elements, while the utilization rate of the anode increases and the passivation film on the electrode surface is destroyed which achieves the activation effect. In the case of magnesium-air battery, Al, Zn, Mn, Li and other alloying elements can improve the corrosion resistance and the discharge capacity of batteries is also improved. The addition of some rare earth elements can refine the grain of light alloys and improve the corrosion and passivation problems of light alloy electrodes.
This paper introduces the basic principles of metal-air batteries, describes the performance of two types of light alloy-air batteries, analyzes the main problems existing in metal-air batteries and briefly introduces the solutions. This paper mainly focuses on the alloying mode of the anode of the battery and the performance of various light alloys in the batteries. The corrosion reasons and control measures in light alloy-air batteries are summarized and prospected.
Key words:  light alloy    air battery    alloying    corrosion control
                    发布日期:  2020-06-24
ZTFLH:  TM911  
基金资助: 国家自然科学基金(青年基金)(51701239);山东省自然科学基金(ZR2017LEM005);中央高校基本科研业务费专项资金(18CX02128A)
通讯作者:  yanlee@upc.edu.cn; alexander_qi87@sina.com   
作者简介:  姚万鹏,2018年毕业于中国石油大学(华东),获得硕士学位。现为中国石油大学(华东)材料科学与工程学院博士研究生,在李焰教授和齐建涛副教授的联合指导下进行研究。目前主要研究领域为镁-空气电池的阳极改性及性能表征。
李焰,中国石油大学(华东)材料科学与工程学院教授,博士研究生导师。青岛首批百强引进人才、青岛杰出科学家和技术学家。中国腐蚀与保护学会油气田与管道腐蚀与保护专业委员会副主席,山东省特种设备协会水处理和有机热载体专业委员会副主任,山东和青岛腐蚀与防护学会副秘书长。成功主持2016年全国腐蚀电化学及测试方法学术交流会。长期从事金属的腐蚀与防护研究,并取得了大量系统性、创新性的研究成果,在电偶腐蚀、微电极阵列研究与表征方面,累计已发表SCI、EI核心期刊论文40余篇,被SCI他人引用300余次。
齐建涛,中国石油大学(华东)化学工程学院副教授,硕士研究生导师。山东省暨青岛市腐蚀与防护学会理事。2011年6月本科毕业于中国石油大学(华东)化学工程学院,2015年9月在英国曼彻斯特大学腐蚀与防护专业取得博士学位,2015—2018年分别在英国曼彻斯特大学(LATEST2项目,合作导师Prof. George Thompson院士)和法国国家科学研究中心(NEPAL FUI项目,合作导师Prof. Philippe Marcus)进行过博士后研究工作。主要从事金属材料的表面改性、纳米材料光谱分析及耐蚀性能评估等方面的研究工作。近年来,在腐蚀与防护研究领域发表论文10余篇,包括Mater. Let.、Electrochem. Commun.、Electrochim. Acta、J. Electrochem. Soc.、Appl. Surf. Sci.、Thin Solid Films.和Surf. Coat. Tech-nol等SCI学术期刊。
引用本文:    
姚万鹏, 曹福勇, 李焰, 齐建涛. 轻合金-空气电池的研究进展[J]. 材料导报, 2020, 34(13): 13058-13067.
YAO Wanpeng, CAO Fuyong, LI Yan, QI Jiantao. Research Progress on Light Alloy-Air Batteries. Materials Reports, 2020, 34(13): 13058-13067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060032  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13058
1 Li H, Gao Y, Sui X L, et al. Carbon, 2017(2), 5(in Chinese).
李华, 高颖, 隋旭磊, 等. 炭素, 2017(2), 5.
2 Reddy T B, Linden D. Linden’s handbook of batteries, McGraw-Hill, USA, 2010.
3 Wang Z W, Li Q F, Gao B L, et al. Non-ferrous Mining and Metallurgy, 2002, 18(1), 38(in Chinese).
王兆文, 李庆峰, 高炳亮, 等.有色矿冶, 2002, 18(1), 38.
4 Zhu M J, Yuan Z S, Sang L, et al. Chinese Journal of Power Sources, 2012, 36(12), 1953(in Chinese).
朱明骏, 袁振善, 桑林, 等.电源技术, 2012, 36(12), 1953.
5 Zhao Y Z, Hu C L, Luo Z H, et al. Materials Reprots, 2017, 31(S1), 215(in Chinese).
赵玉振, 胡承亮, 罗志虹, 等.材料导报, 2017, 31(专辑29), 215.
6 Tan P, Jiang H R, Zhu X B, et al. Applied Energy, 2017, 204, 780.
7 Wang T H, Hang Y, Zhang D W. Journal of Hefei University of Technology, 2018, 41(10), 1420(in Chinese).
王桃环, 杭阳, 张大伟.合肥工业大学学报(自然科学版), 2018, 41(10), 1420.
8 Wu Z B, Song S S, Dong A, et al. Materials Reprots A: Review Papers, 2019, 33(1), 135(in Chinese).
吴子彬, 宋森森, 董安, 等.材料导报:综述篇, 2019, 33(1), 135.
9 Zhang D, Zhang C Z, Mu D B, et al. Chemical Industry and Engineering Progress, 2012, 24(12), 2472(in Chinese).
张栋, 张存中, 穆道斌, 等.化学进展, 2012, 24(12), 2472.
10 Gu D M, Wang Y, Gu S, et al. Acta Chimica Sinica, 2013, 71(10), 1354(in Chinese).
顾大明, 王余, 顾硕, 等.化学学报, 2013, 71(10), 1354.
11 Girishkumar G, McCloskey B, Luntz A C, et al. The Journal of Physical Chemistry Letters, 2010, 1(14), 2193.
12 Yu Q, Li M L, Ma L, et al. Ordnance Material Science and Engineering, 2019, 42(1), 95(in Chinese).
余琼, 李明利, 马兰, 等.兵器材料科学与工程, 2019, 42(1), 95.
13 Zhang T, Tao Z, Chen J. Materials Horizons, 2014, 1(2), 196.
14 Cui L J. The preparation and performance of catalysts of oxygen electrode in lithium-air batteries. Master’s Thesis, Taiyuan University of Science and Technology, China, 2018(in Chinese).
崔雷杰. 锂空气电池氧气电极催化剂的制备及其性能研究. 硕士学位论文, 太原科技大学, 2018.
15 Zhao S N, Li A H. Chinese Journal of Power Sources, 2014, 38(10), 1969(in Chinese).
赵少宁, 李艾华.电源技术, 2014, 38(10), 1969.
16 Ren X Y. Battery Bimonthly, 1994, 24(6), 284(in Chinese).
任学佑.电池, 1994, 24(6), 284.
17 Shi P F, Yin G P, Xia B J, et al. Journal of Power Sources, 1993, 45(1), 105.
18 Tuck C D S, Hunter J A, Scamans G M. Journal of the Electrochemical Society, 1987, 134(12), 2970.
19 Egan D R, Ponce de León C, Wood R J K, et al. Journal of Power Sources, 2013, 236, 293.
20 Keir D S, Pryor M J, Sperry P R. Journal of the Electrochemical Society, 1967, 114(8), 777.
21 Doche M L, Novel-Cattin F, Durand R, et al. Journal of Power Sources, 1997, 65(1), 197.
22 Smoljko I, Gudić S, Kuzmanić N, et al. Journal of Applied Electroche-mistry, 2012, 42(11), 969.
23 Ma J L, Wen J B, Li G F, et al. Heat Treatment of Metals, 2008, 33(8), 57(in Chinese).
马景灵, 文九巴, 李光福, 等.金属热处理, 2008, 33(8), 57.
24 Choi Y, Kalubarme R S, Jang H, et al. Korean Journal of Metal Mate-rial, 2011, 49(11), 839.
25 You W, Lin S Y. Aluminium Fabrication, 1998, 21(5), 35(in Chinese).
游文, 林顺岩.铝加工, 1998, 21(5), 35.
26 Gudić S, Smoljko I, Kliškić M. Journal of Alloys and Compounds, 2010, 505(1), 54.
27 Gudić S, Smoljko I, Kliškić M. Materials Chemistry and Physics, 2010, 121(3), 561.
28 Bockris J O, Conway B E, Yeager E, et al. Comprehensive treatise of electrochemistry, Plenum Press, USA, 1981.
29 Macdonald D D, Lee K H, Moccari A, et al. Corrosion, 1988, 44(9), 652.
30 Wilhelmsen W, Arnesen T, Hasvold Ø, et al. Electrochimica Acta, 1991, 36(1), 79.
31 Cui J L. Investigations on the aluminum alloying for aluminum-air battery. Master’s Thesis, Tianjin University, China, 2016(in Chinese).
霍佳磊. 铝-空气电池用铝合金负极的合金化研究. 硕士学位论文, 天津大学, 2016.
32 Ma J, Wen J, Zhu H, et al. Journal of Power Sources, 2015, 293, 592.
33 Wen J B, Gao J W, He J G, et al. Transactions of Materials and Heat Treatment, 2014, 35(9), 131(in Chinese).
文九巴, 高军伟, 贺俊光, 等. 材料热处理学报, 2014, 35(9), 131.
34 Ma J, Wen J, Gao J, et al. Journal of Power Sources, 2014, 253, 419.
35 Tang Y G, Han H T, Xie Z H. Journal of Central South University (Scie-nce and Technology), 2006, 37(4), 737(in Chinese).
唐有根, 韩红涛, 谢正和.中南大学学报(自然科学版), 2006, 37(4), 737.
36 Qi G T, Zhang Y Y. Chinese Journal of Rare Metals, 2004, 28(6), 1010(in Chinese).
齐公台, 张盈盈.稀有金属, 2004, 28(6), 1010.
37 Mao Z W. Study on aluminum alloy anode for alkaline power battery. Master’s Thesis, Central South University, China, 2009(in Chinese).
毛志伟. 碱性动力电池铝合金阳极研究. 硕士学位论文, 中南大学, 2009.
38 Shi C X, Li H D, Wang D Z, et al. Materials Reprots, 2001, 15(4), 5(in Chinese).
师昌绪, 李恒德, 王淀佐, 等.材料导报, 2001, 15(4), 5.
39 Mu W Y, Li Z X, Du J H, et al. Materials Reprots A: Review Papers, 2011, 25(7), 35(in Chinese).
慕伟意, 李争显, 杜继红, 等.材料导报:综述篇, 2011, 25(7), 35.
40 Deng S H, Yi D Q, Lan B, et al. Chinese Journal of Power Sources, 2008, 32(8), 508(in Chinese).
邓姝皓, 易丹青, 兰博, 等.电源技术, 2008, 32(8), 508.
41 Song G, Atrens A, John D S, et al. Corrosion Science, 1997, 39(10), 1981.
42 Wang N G. Research on electrochemical behavior of AP65 magnesium alloy in sodium chloride solution. Master’s Thesis, Central South University, China, 2013(in Chinese).
王乃光. AP65镁合金在氯化钠溶液中电化学行为研究. 硕士学位论文, 中南大学, 2013.
43 Lin M C, Tsai C Y, Uan J Y. Corrosion Science, 2009, 51(10), 2463.
44 Liu W, Cao F, Chang L, et al. Corrosion Science, 2009, 51(6), 1334.
45 Ma Y, Li N, Li D, et al. Journal of Power Sources, 2011, 196(4), 2346.
46 Gao S. Studying of performance of rare earth-magnesium anode for magnesium air battery. Master’s Thesis, Henan University of Technology, China, 2017(in Chinese).
高顺. 稀土镁合金负极对镁空气电池性能影响研究. 硕士学位论文, 河南工业大学, 2017.
47 Liu X, Xue J, Zhang P, et al. Journal of Power Sources, 2019, 414, 174.
48 Wang N, Wang R, Peng C, et al. Electrochimica Acta, 2014, 149, 193.
49 Yuasa M, Huang X, Suzuki K, et al. Journal of Power Sources, 2015, 297, 449.
50 Xiong H, Yu K, Yin X, et al. Journal of Alloys and Compounds, 2017, 708, 652.
51 Liu X, Liu S, Xue J. Journal of Power Sources, 2018, 396, 667.
52 Deng M, Höche D, Lamaka S V, et al. Journal of Power Sources, 2018, 396, 109.
53 Dražić D M, Popić J P. Journal of Applied Electrochemistry, 1999, 29(1), 43.
54 Cho Y J, Park I J, Lee H J, et al. Journal of Power Sources, 2015, 277, 370.
55 Li B Y, Dong Q, Zhang J, et al. Materials China, 2016, 35(11), 849(in Chinese).
李碧谕, 东青, 张佼, 等.中国材料进展, 2016, 35(11), 849.
56 Li H M. Study on corrosion inhibitor of magnesium air battery electrolyte. Master’s Thesis, Kunming University of Science and Technology, China, 2017(in Chinese).
李慧明. 镁空气电池电解液缓蚀剂的研究. 硕士学位论文, 昆明理工大学, 2017.
57 Hong W C, Ma H Y, Zhao H B, et al. Chemical Industry and Enginee-ring Progress, 2016, 35(6), 1713(in Chinese).
洪为臣, 马洪运, 赵宏博, 等.化工进展, 2016, 35(6), 1713.
58 Brito P S D, Sequeira C A C. Journal of Fuel Cell Science and Technology, 2013, 11(1), 011008.
59 Wang C, Qiu P D, Cai K D, et al. Chemical Industry and Engineering Progress, 2016, 35(5), 1396(in Chinese).
王诚, 邱平达, 蔡克迪, 等.化工进展, 2016, 35(5), 1396.
60 Deng J F. The influence of magnesium anode with different processing conditions and inhibitor on magnesium air battery. Master’s Thesis, Chongqing University, China, 2013(in Chinese).
邓金凤. 镁负极加工状态与缓蚀剂对镁空气电池的影响. 硕士学位论文, 重庆大学, 2013.
61 Ma X L, Gao S, Zhou Y. Chinese Journal of Power Sources, 2017, 41(2), 331(in Chinese).
马晓录, 高顺, 周颖.电源技术, 2017, 41(2), 331.
62 Fan L, Lu H. Journal of Power Sources, 2015, 284, 409.
63 Fan L, Lu H, Leng J. Electrochimica Acta, 2015, 165, 22.
64 He J G, Wen J B, Zhou X D, et al. Corrosion Science and Protection Technology, 2013, 25(3), 229(in Chinese).
贺俊光, 文九巴, 周旭东, 等.腐蚀科学与防护技术, 2013, 25(3), 229.
65 Deng J F, Huang G S, Zhao Y C, et al. Rare Metal Materials and Engineering, 2014, 43(2), 316.
66 Yao Y F, Chen C G, Liu Y P, et al. Materials Reprots A: Review Papers, 2009, 23(10), 119(in Chinese).
尧玉芬, 陈昌国, 刘渝萍, 等.材料导报:综述篇, 2009, 23(10), 119.
67 Bartolomé M J, del Río J F, Escudero E, et al. Surface and Coatings Technology, 2008, 202(12), 2783.
68 Li Q, Bjerrum N J. Journal of Power Sources, 2002, 110(1), 1.
69 Chen L. Research on the anodic corrosion film-forming process and vol-tage delay of magnesium battery. Master’s Thesis, Chongqing University, China, 2015(in Chinese).
陈琳. 镁电池的负极腐蚀成膜与电压滞后研究. 硕士学位论文,重庆大学, 2015.
70 Hu Q M, Zhang Y, Chen Q R, et al. Chinese Journal of Power Sources, 2015, 39(1), 210(in Chinese).
胡启明, 张娅, 陈秋荣.电源技术, 2015, 39(1), 210.
71 Xiong Y Y, Zhang Y, Hu S F, et al. Journal of Chinese Society for Corrosion and Protection, 2013, 33(3), 241(in Chinese).
熊媛媛, 张娅, 胡少峰, 等.中国腐蚀与防护学报, 2013, 33(3), 241.
72 Zhang W B. Chinese Journal of Power Sources, 2002, 26(6), 448(in Chinese).
张文保.电源技术, 2002, 26(6), 448.
[1] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[2] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[3] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[4] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[5] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[6] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[7] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[8] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[9] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[10] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[11] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[12] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[13] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[14] 靳军, 孙俊生, 孙洪根, 卢庆亮, 许京伟, 杨云. 热作模具表面氮合金化堆焊金属的组织和性能[J]. 材料导报, 2019, 33(19): 3184-3188.
[15] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed