Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 356-360    
  金属与金属基复合材料 |
热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响
张洋1,2, 张海燕3, 陈蕴博1,2,4, 王大鹏4, 陈林1,2, 刘晓萍3
1 机械科学研究总院集团有限公司,先进成形技术与装备国家重点实验室,北京 100083;
2 北京机科国创轻量化科学研究院有限公司,北京 100083;
3 山东隆基机械股份有限公司,烟台 265700;
4 山东科技大学材料科学与工程学院,青岛 266590
Effect of Heat Treatment on Microstructure and Wear Characteristic of Al-Cu-Mg/SiCp Braking and Wear-resistant Composites Produced by Hot Pressing
ZHANG Yang1,2, ZHANG Haiyan3, CHEN Yunbo1,2,4, WANG Dapeng4, CHEN Lin1,2, LIU Xiaoping3
1 State Key Laboratory for Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology Group Co., ltd., Beijing 100083, China;
2 Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China;
3 Shandong Longji Machinery Co., Ltd., Yantai 265700, China4 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
下载:  全 文 ( PDF ) ( 5447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 颗粒增强铝基复合材料已经成为新型轻量化制动耐磨部件的重要备选材料。本工作采用热压法高质量制备了Al-Cu-Mg/SiCp复合材料,重点通过热处理前后复合材料的显微组织以及磨损后形貌和相组成等的比较研究,分析了复合材料的性能,尤其是摩擦磨损特性的变化机制,并解释了整体材料磨损过程的可能转变及影响。结果表明,经过适当的T6热处理,复合材料的抗拉强度由268 MPa增加至387 MPa,提高约44%,延伸率由6.0%变化至5.6%,基本保持稳定,相对磨损率则由0.153 mm3·(N·km)-1减小至0.095 mm3·(N·km)-1,降低约38%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洋
张海燕
陈蕴博
王大鹏
陈林
刘晓萍
关键词:  铝基复合材料  析出强化  摩擦磨损特性  氧化磨损    
Abstract: Particles reinforced aluminum matrix composite has been the main candidate material for the braking and wear-resistant components. In this work, Al-Cu-Mg/SiCp composites were well produced by hot pressing method. By means of comparative study on the microstructure of composites with and without heat treatment, as well as the morphology and phase composition of wore surfaces, the variation of the properties, especially the friction and wear characteristics, were analyzed. Further, the possible alterations during the wearing process and its effects were explained. Routed by proper T6 heat treatment, the properties of composites were significantly optimized. The tensile strength was raised from 268 MPa to 387 MPa, which is about 44% improvement, the elongation was changed from 6.0% to 5.6%, which is stable roughly, and the specific wear rate was reduced from 0.153 mm3·(N·km)-1 to 0.095 mm3·(N·km)-1, which is about 38% reduction.
Key words:  aluminum matrix composites    precipitation hardening    friction and wear characteristic    oxidation wear
                    发布日期:  2020-07-01
ZTFLH:  TB333  
基金资助: 山东省泰山产业领军人才(2017)
作者简介:  张洋,材料学博士,高级工程师,目前于国家轻量化材料成形技术与装备创新中心就职项目主管工程师,主要从事先进铝合金和铝基复合材料的研究,以及其特种装备和工艺研发。主持包括国家自然科学基金在内纵向课题4项,企业合作横向项目5项,授权发明专利6项,发表学术论文30余篇。主持完成气体辅助压力熔渗成形、多模态电磁搅拌低压成形、真空挤压铸造电磁传输等成套装备及关键技术攻关,成功开发高导热复合材料导热板部件、轻质铝基复合材料制动盘、高强韧压铸铝合金车桥件等系列产品,分别在航天、乘用车等领域取得优异使用效果,期望以材料、工艺及装备方面取得的成果为基础,深化加强与制造企业合作,聚焦对传统钢铁材料体系替代升级,推动轻量化进程。
引用本文:    
张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
ZHANG Yang, ZHANG Haiyan, CHEN Yunbo, WANG Dapeng, CHEN Lin, LIU Xiaoping. Effect of Heat Treatment on Microstructure and Wear Characteristic of Al-Cu-Mg/SiCp Braking and Wear-resistant Composites Produced by Hot Pressing. Materials Reports, 2020, 34(Z1): 356-360.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/356
1 Che Z F, Li J W, Wang L H, et al. RSC Advances,2016,6,67252.
2 Zhao L Z, Zhao M J, Cao X M, et al. Composites Science and Technology,2007,67,3404.
3 庄伟彬,田宗伟,刘广柱,等.材料导报:研究篇,2019,33(11),3762.
4 Rahsepar M, Jarahimoghadam H. Materials Science & Engineering A,2016,671,214.
5 Venkatarman B, Sundararajan G. Acta Metallurgica,1996,44,451.
6 Laden K, Guerin J D, Watremez M, et al. Tribology Letters,2000,8,237.
7 Qu X H, Zhang L, Wu M, et al. Progress in Natural Science: Materials International,2011,21,189.
8 Hu C J, Yan H G, Chen J H, et al. Transaction of Nonferrous Metals Society of China,2016,26,1259.
9 金鹏,肖伯律,王全兆,等.金属学报,2011,47(3),298.
10 李海涛,许广兴,景绿路.轻合金加工技术,2014,42(1),47.
11 历长云,胡玉昆,郑喜军,等.稀有金属材料与工程,2012,41(增刊2),413.
12 Yang D L, Qiu F, Zhao Q L, et al. Materials Science & Engineering A,2017,661,217.
13 王盘新.粉末冶金学,冶金工业出版社,1997.
14 郎玉靖.基于应变诱导析出的热变形细化7050铝合金及其力学行为.博士学位论文,北京科技大学,2012.
15 张洋,车子璠,李建伟,等.人工晶体学报,2014,43(9),2241.
16 Zhang Z Z, Chen Y B, Zhang Y, et al. Journal of Alloys and Compounds,2017,704,260.
17 Richardson R C D. Wear,1967,10,291.
18 Deuis R L, Subramanian C, Yellup J M. Wear,1996,201,132.
[1] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[2] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[3] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[4] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[5] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[6] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[7] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[8] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[9] 邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
[10] 胡晓峰, 余昆, 彭大硌, 邓立勋, 王辉虎, 罗平, 谢志雄, 董仕节. 铝基复合材料水解制氢及其水解产物的吸附性能[J]. 材料导报, 2018, 32(21): 3720-3725.
[11] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[12] 袁野, 王一帆, 侯华, 赵宇宏, 田晋忠. Al-Cu-Fe-Cr准晶增强铝基复合材料的研究[J]. 材料导报, 2018, 32(15): 2635-2639.
[13] 叶赟, 何国球, 戴礼权, 卢棋, 刘晓山, 吕世泉. SiCp/A356铝基复合材料的磨损性能研究[J]. 《材料导报》期刊社, 2017, 31(2): 60-63.
[14] 贺毅强, 钱晨晨, 李俊杰, 周海生. 喷射沉积铝基复合材料再结晶控制与强韧化机制的研究现状*[J]. 《材料导报》期刊社, 2017, 31(17): 90-97.
[15] 张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed