Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23060132-8    https://doi.org/10.11896/cldb.23060132
  无机非金属及其复合材料 |
钢渣粉低液固比固碳工艺及固碳钢渣粉对水泥基材料性能的影响
伍勇华*, 匡玉峰, 易昂, 何娟, 原毅冰
西安建筑科技大学材料科学与工程学院,西安 710055
Low Liquid-Solid Ratio Carbon Fixation Process with Steel Slag Powder and the Effect of Carbon Fixation Steel Slag Powder on the Properties of Cement-based Materials
WU Yonghua*, KUANG Yufeng, YI Ang, HE Juan, YUAN Yibing
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 20454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 矿物固碳进行CO2捕集是减少温室效应的重要途径,钢铁生产企业利用钢渣与带有余热和CO2的废气反应可以达到协同处置的效果。本工作研究了低液固比(润湿状态)条件下钢渣固碳的最佳工艺,确定出最佳固碳反应参数为反应温度100 ℃、液固比9%、反应时间60 min、CO2压力0.4 MPa。该工艺条件下,钢渣粉固碳率可达119.1 g CO2/kg,固碳产物主要为方解石型碳酸钙。在此基础上,研究了掺入固碳钢渣粉对水泥净浆体积安定性、标准稠度需水量、凝结时间、胶砂强度和水化热的影响。结果表明:钢渣粉固碳后,体积安定性明显改善;固碳钢渣粉对水泥净浆标准稠度需水量无不利影响;与未固碳钢渣相比,固碳钢渣对水泥凝结硬化的延缓作用有所减弱,且随固碳率增大减弱效果增强;固碳钢渣粉在低掺量(10%)时,能提高水泥胶砂的3 d、7 d和28 d抗压强度,但掺量过高(>30%)时,会显著降低水泥胶砂的3 d、7 d和28 d抗压强度。XRD测试表明CaCO3能够水化生成单碳型水化碳铝酸钙(C3A·CaCO3·11H2O)和半碳型水化碳铝酸钙(C3A·0.5CaCO3·0.5Ca(OH)2·11.5H2O)。低液固比固碳有助于钢铁企业实现碳中和,也可以改善钢渣体积安定性,使钢渣粉得到更有效的利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍勇华
匡玉峰
易昂
何娟
原毅冰
关键词:  钢渣  矿物固碳  固碳率  体积安定性  水化碳铝酸钙    
Abstract: The mineral carbon sequestration for CO2 absorption is crucial for reducing the greenhouse effect. Steel production enterprises can achieve synergistic disposal by reacting steel slag with exhaust gas CO2 and waste heat. In this paper, the optimum process of steel slag carbon sequestration under low liquid-solid ratio (wetting state) was studied. The optimum carbon fixation reaction parameters were determined as follows: reaction temperature 100 ℃, liquid-solid ratio 9%, reaction time 60 min, CO2 pressure 0.4 MPa. Under this process condition, the carbon fixation of steel slag powder can reach 119.1 g CO2/kg, and the carbon fixation product is mainly calcite calcium carbonate. On this basis, the effects of carbon-fixing steel slag powder on cement stability, standard consistency water demand, setting time, hydration heat release and mortar strength were studied. The results showed that the volume stability of steel slag powder is significantly improved after carbon fixation. Compared with uncarbon-fixing steel slag powder, there is no adverse effect on the water demand of cement paste standard consistency. The retarding effect of carbon-fixing steel slag on cement setting and hardening is weakened, and the weakening effect is enhanced with the increase of carbon fixation rate. Carbon-fixing steel slag powder can improve the 3 d, 7 d and 28 d compressive strength of cement mortar at low content (10%), but when the content is too high (>30%), it will significantly reduce the 3 d, 7 d and 28 d compressive strength of cement mortar. XRD test shows that CaCO3 can hydrate to form single-carbon hydrated calcium carboaluminate (C3A·CaCO3·11H2O) and semi-carbon hydrated calcium carboaluminate (C3A·0.5CaCO3·0.5Ca(OH)2·11.5H2O). Low liquid-solid ratio carbon fixation is helpful for iron and steel enterprises to achieve carbon neutralization, and can also improve the volume stability of steel slag, so that steel slag powder can be used more effectively.
Key words:  steel slag    mineral carbon sequestration    carbon sequestration rate    soundness    calcium carboaluminate hydrate
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU528  
基金资助: 陕西省自然科学基础研究计划项目(2021JM-353)
通讯作者:  *伍勇华,西安建筑科技大学副教授、硕士研究生导师。1996年毕业于重庆建筑大学材料学院,获得学士学位;2002年6月在西安建筑科技大学获得硕士学位;2011年1月在西北工业大学理学院材料学专业获得博士学位。主要从事混凝土外加剂和高性能混凝土方面的研究工作,在国内外重要期刊发表论文80余篇。wuyonghua@xauat.edu.cn   
引用本文:    
伍勇华, 匡玉峰, 易昂, 何娟, 原毅冰. 钢渣粉低液固比固碳工艺及固碳钢渣粉对水泥基材料性能的影响[J]. 材料导报, 2024, 38(13): 23060132-8.
WU Yonghua, KUANG Yufeng, YI Ang, HE Juan, YUAN Yibing. Low Liquid-Solid Ratio Carbon Fixation Process with Steel Slag Powder and the Effect of Carbon Fixation Steel Slag Powder on the Properties of Cement-based Materials. Materials Reports, 2024, 38(13): 23060132-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060132  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23060132
1 Rodhe H.Science,1990,248(4960),1217.
2 Baker R W,Freeman B,Kniep J,et al.Industrial & Engineering Chemistry Research,2018,57(47),15963.
3 Huijgen W J J,Comans R N J,Witkamp G J.Energy Conversion & Management,2007,48(7),1923.
4 Zevenhoven R,Teir S,Eloneva S.Energy,2008,33(2),362.
5 Seifritz W.Nature,1990,345(6275),486.
6 Tomkinson T,Lee M R,Mark D F,et al.Nature Communications,2013,4(1),2662.
7 Teir S,Eloneva S,Fogelholm C J,et al.Applied Energy,2009,86(2),214.
8 Altiner M.International Journal of Coal Preparation and Utilization,2019,39(3),113.
9 Chang E E,Chen C H,Chen Y H,et al.Journal of Hazardous Materials,2011,186(1),558.
10 Ma Z H,Liao H Q,Cheng F Q.International Journal of Greenhouse Gas Control,2021,105,103229.
11 Jeon J,Kim M J.Chemical Engineering Journal,2019,378,122180.
12 Su T H,Yang H J,Shau Y H,et al.Journal of Environmental Sciences,2016,41,99.
13 Guo J L,Bao Y P,Wang M.Waste Management,2018,78,318.
14 Zhang H N,Lu Y M,Dong J H,et al.Metals,2016,6(5),117.
15 Li J J,Ni W,Wang X,et al.Journal of Building Engineering,2022,50,104123.
16 Reddy K R,Gopakumar A,Rai R K,et al.Waste Management & Research,2019,37(5),469.
17 Yadav S,Mehra A.Waste Management,2017,64,348.
18 Ma M T,Mehdizadeh H,Guo M Z,et al.Construction and Building Materials,2021,304,124628.
19 Revathy T D R,Palanivelu K,Ramachandran A.Environmental Science and Pollution Research,2016,23(8),7349.
20 Omale S O,Choong T S Y,Abdullah L C,et al.Heliyon,2019,5(10),e02602.
21 Ghacham A B,Pasquier L C,Cecchi E,et al.Environmental Science and Pollution Research,2016,23,17635.
22 Li J L,Zhang H N,Xu A J,et al.Journal of Iron and Steel Research International,2012,19(12),29.
23 Chang J.Journal of the Chinese Ceramic Society,2007,221(9),1264 (in Chinese).
常钧.硅酸盐学报,2007,221(9),1264.
24 Gao H Y,Liao H Q,Yao X L,et al.Construction and Building Materials,2019,209,437.
25 Tu M X,Zhao H X,Lei Z,et al.ISIJ International,2015,55(11),2509.
26 Lin Y H,Deng K H,Ning H Z,et al.Journal of China University of Petroleum(Edition of Natural Science),2021,45(1),117 (in Chinese).
林元华,邓宽海,宁华中,等.中国石油大学学报:自然科学版,2021,45(1),117.
27 Wang Q,Yan P Y.Construction and Building Materials,2010,24(7),1134.
28 Fu Q,Zhang Z R,Zhao X,et al.Journal of Building Engineering,2022,50,104220.
29 Huang Z Y,Zu T Y.Bulletin of the Chinese Ceramic Society,2013,32(6),1103 (in Chinese).
黄政宇,祖天钰.硅酸盐通报,2013,32(6),1103.
[1] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[2] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[3] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[4] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 霍彬彬, 陈春, 张亚梅. 磷酸改性钢渣粉复合氢氧化钙浆体早期水化与微观结构[J]. 材料导报, 2023, 37(15): 21100115-5.
[7] 李宝让, 马慧博, 赵旭章, 李文瀚, 金永强, 张志鸿, 郝俊杰. 钢渣固废蓄热技术及其潜在的应用技术研究[J]. 材料导报, 2023, 37(14): 22030293-18.
[8] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[9] 王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
[10] 柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
[11] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[12] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[15] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed