Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 24010026-8    https://doi.org/10.11896/cldb.24010026
  金属与金属基复合材料 |
动态冲击载荷下7003铝合金的力学响应行为及力学本构建模
叶拓1, 邱飒蔚1, 夏二立1, 郭鹏程1,2,*, 吴远志1, 李落星2
1 湖南工学院智能制造与机械工程学院,湖南 衡阳 421002
2 湖南大学重庆研究院,重庆 400044
Mechanical Response Behavior and Mechanical Constitutive Modeling of 7003 Aluminum Alloy Under Dynamic Impact Load
YE Tuo1, QIU Sawei1, XIA Erli1, GUO Pengcheng1,2,*, WU Yuanzhi1, LI Luoxing2
1 School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 Research Institute of Hunan University in Chongqing, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 37110KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分离式霍普金森压杆装置对7003铝合金在不同应变速率下的室温动态力学响应行为进行了研究。结果表明:实验用7003铝合金的流变应力随应变速率的增加而增加,表现出正的应变速率敏感性,当加载应变速率增加至4 100 s-1时,剪切变形局域化所产生的绝热温升软化完全抵消了应变硬化和应变速率硬化,导致其流变应力在变形中期便随加载应变的增加而逐渐降低。随加载应变的增加,位错不断增殖使得位错密度不断增加。同时,这些位错在晶界处不断地塞积,并逐渐演变成胞状位错亚结构,导致位错密度逐渐达到饱和。通过优化原始J-C本构的应变硬化项、应变速率系数Cn,并引入绝热温升修正项,构建了能够准确预测7003铝合金在不同变形条件下应力响应行为的力学本构模型。拟合结果与实验结果的偏差均在±10%以内,预测值与实验值的相关系数(R)和平均相对误差(AARE)分别为99.17%和1.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶拓
邱飒蔚
夏二立
郭鹏程
吴远志
李落星
关键词:  7003铝合金  动态冲击  力学响应  本构建模  组织演变    
Abstract: The dynamic mechanical response behavior of 7003 aluminum alloy at room temperature and different strain rates was studied using a split Hopkinson pressure bar. The results show that the flow stress of the 7003 aluminum alloy increases with the increase of applied strain rate, showing a positive strain rate sensitivity. When the loading strain rate increases to 4 100 s-1, the adiabatic temperature rise softening caused by localization of shear deformation completely counteracts the strain hardening and strain rate hardening. As a result, the flow stress decreases gradually with the increase of loading strain in the middle stage of deformation. With the increase of loading strain, the dislocation density increases due to the proliferation of dislocations. At the same time, these dislocations continue to pile up at grain boundaries, and gradually evolve into cellular dislocation substructures, resulting in the saturation of dislocation density. By optimizing the strain hardening term, strain rate coefficient C and n of the original J-C constitutive, and introducing a correction term of adiabatic temperature rise, a mechanical constitutive model which can accurately predict the stress response behavior of 7003 aluminum alloy under different deformation conditions is constructed. The deviations between the fitting results and the experimental results are all within ±10%, and the correlation coefficient (R) and average relative error (AARE) between the predicted and experimental values are 99.17% and 1.3%, respectively.
Key words:  7003 aluminum alloy    dynamic impact    stress response    constitutive modeling    microstructure evolution
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TH142.3  
基金资助: 国家自然科学基金(52201074;52171115;U20A20275);长沙市自然科学基金(kq2208420)
通讯作者:  *郭鹏程,中南林业科技大学副教授、硕士研究生导师,2010年于中北大学获得学士学位,2013年于燕山大学获得硕士学位,2017年于湖南大学获机械工程博士学位。主要研究方向为整车多学科多目标优化设计及车身用高强钢与铝镁合金成形技术。发表学术论文60余篇,授权发明专利5项。gpch860429@163.com   
作者简介:  叶拓,湖南工学院智能制造与机械工程学院副教授。2011年湖南大学材料科学与工程专业本科毕业,2016年湖南大学机械工程专业博士毕业后到湖南工学院工作至今。目前主要从事汽车轻量化材料的制备与加工、金属材料强韧化等方面的研究工作。发表论文40余篇,授权发明专利6项。
引用本文:    
叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
YE Tuo, QIU Sawei, XIA Erli, GUO Pengcheng, WU Yuanzhi, LI Luoxing. Mechanical Response Behavior and Mechanical Constitutive Modeling of 7003 Aluminum Alloy Under Dynamic Impact Load. Materials Reports, 2024, 38(13): 24010026-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010026  或          http://www.mater-rep.com/CN/Y2024/V38/I13/24010026
1 Wei Y F, Han X B, Lu L G, et al. Automotive Engineering, 2022, 44(4), 449(in Chinese).
魏一凡, 韩雪冰, 卢兰光, 等. 汽车工程, 2022, 44(4), 449.
2 Guo P C, Cao S F, Yi J, et al. Automotive Engineering, 2017, 39(8), 915(in Chinese).
郭鹏程, 曹淑芬, 易杰, 等. 汽车工程, 2017, 39(8), 915.
3 Tang H, Wang Q, Luo C, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(1), 98.
4 Ye T, Li L, Liu X, et al. Materials Science and Engineering A, 2016, 666, 149.
5 Xu C C, Ye T, Tang M, et al. Materials Reports, 2019, 33(4), 670(in Chinese).
徐从昌, 叶拓, 唐明, 等. 材料导报, 2019, 33(4), 670.
6 Sun G, Yu H, Wang Z, et al. International Journal of Mechanical Sciences, 2019, 150, 767.
7 Xing R, Guo P, Xu C, et al. International Journal of Impact Enginee-ring, 2024, 186, 104875.
8 Ye T, Li L, Guo P, et al. International Journal of Impact Engineering, 2016, 90, 72.
9 Liu W, He Z, Chen Y, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(7), 2179.
10 Zhang P, Wang Y, Luo H, et al. JOM, 2019, 71(7), 2380.
11 Chen F, Guo P, Jiang Z, et al. Acta Metallurgica Sinica (English Letters), 2023, 36(2), 281.
12 Khan M A, Wang Y, Yasin G, et al. Journal of Materials Research and Technology, 2019, 8(6), 6177.
13 Liu S, Wang S, Ye L, et al. Materials Science and Engineering A, 2016, 677, 203.
14 Xing R, Guo P, Xu C, et al. International Journal of Impact Enginee-ring, 2024, 186, 104875
15 Xing R, Guo P, Xu C, et al. Journal of Alloys and Compounds, 2024, 983, 173915.
16 Li C, Rasheed S, Malik A, et al. Journal of Materials Research and Technology, 2022, 20, 2489.
17 Khan M A, Wang Y, Hamza M, et al. Materials Characterization, 2021, 180, 111398.
18 Khan M A, Wang Y, Afifi M A, et al. Archives of Civil and Mechanical Engineering, 2022, 23(1), 33.
19 Zhang D, Shangguan Q, Xie C, et al. Journal of Alloys and Compounds, 2015, 619, 186.
20 Song P, Li W, Wang X, et al. Materials Science and Technology, 2019, 35(8), 916.
21 Tang W, Liu S, Liu Z, et al. Materials Science and Engineering A, 2021, 809, 140994.
22 Xu C, He H, Xue Z, et al. Materials Characterization, 2021, 171, 110801.
23 Ma H, Huang L, Tian Y, et al. Materials Science and Engineering A, 2014, 606, 233.
24 Lee W, Tang Z. Materials and Design, 2014, 58(6), 116.
25 Wu X, Li L, Liu W, et al. Materials Science and Engineering A, 2018, 732, 91.
26 Ye T, Wu Y, Liu W, et al. Metals, 2019, 9(6), 629.
27 Li Y, Zhang P, Yu X, et al. Ordnance Material Science and Enginee-ring, 2020, 43(1), 20(in Chinese).
李媛媛, 张平, 于晓, 等. 兵器材料科学与工程, 2020, 43(1), 20.
28 Kim S, Jo M C, Park T W, et al. Materials Science and Engineering A, 2021, 804, 140757.
29 Wang Y, Jiang Z. Materials Science and Engineering A, 2012, 553, 176.
30 Bobbili R, Ramakrishna B, Madhu V, et al. Defence Technology, 2015, 11(1), 93.
31 Guo P, Li L, Ye T, et al. International Journal of Impact Engineering, 2017, 109, 112.
32 Afifi M, Wang Y, Cheng X, et al. Journal of Alloys and Compounds, 2019, 791, 1079.
33 Huang D, Li Z, Zhou X D, et al. Rare Metal Materials and Engineering, 2021, 50(1), 242(in Chinese).
黄丹, 李卓, 周旭东, 等. 稀有金属材料与工程, 2021, 50(1), 242.
34 Liu W, Wu Y Z, Deng B, et al. Materials Reports, 2021, 35(4), 4134(in Chinese).
刘伟, 吴远志, 邓彬, 等. 材料导报, 2021, 35(4), 4134.
35 Khan A S, Zhang H, Takacs L. International Journal of Plasticity, 2000, 16(12), 1459.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[3] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[4] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[5] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[6] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[7] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[8] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[9] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[10] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[11] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[12] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[13] 陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
[14] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[15] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed