Effect of Slip-Roll Ratio on the Current-Carrying Tribology Performance of Cu/Cu Rolling Pairs
ZENG Zexiang1, SONG Chenfei1,*, WU Haihong2, LYU Bin2, SUN Chao1, PANG Xianjuan1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 CSSC Jiujiang Jingda Techology Co., Ltd., Jiujiang 332000, Jiangxi, China
Abstract: Slip-roll ratio was an important factor affecting the rolling contact. In this work, current-carrying tribology performance of Cu/Cu rolling pairs were studied under different slip-roll conditions. With the increase of slip-roll ratio, the average current-carrying friction coefficient increased, the contact resistance decreased first and then remained stable, and the width of wear mark increased. As a comparison, the mechanical friction coefficient at the same slip-roll ratio without current changed in the similar trends but the value was lower. The increase of slip-roll ratio promoted the fatigue wear, and the degree of surface oxidation decreased due to the fatigue spalling of material. The slip-roll led to obvious plastic deformation of subsurface layer. By comparing the results with and without current, it was found that the current aggravated surface fatigue and plastic deformation of the subsurface which may be related to the Joule heating-induced material weakening. The slip-roll could enhance the electrical conductivity but cause drastic fatigue damage, and the participation of current promoted the material damage. How to control the slip-roll ratio is a key challenge for future design of rolling conductive rotary joints.
曾泽祥, 宋晨飞, 吴海红, 吕斌, 孙超, 逄显娟, 张永振. 滑滚比对Cu/Cu对滚配副载流摩擦性能的影响[J]. 材料导报, 2023, 37(21): 22040041-6.
ZENG Zexiang, SONG Chenfei, WU Haihong, LYU Bin, SUN Chao, PANG Xianjuan, ZHANG Yongzhen. Effect of Slip-Roll Ratio on the Current-Carrying Tribology Performance of Cu/Cu Rolling Pairs. Materials Reports, 2023, 37(21): 22040041-6.
1 Liu W K, Zheng C R, Zhao K J. Fire Control Radar Technology, 2014, 43(2), 107(in Chinese). 刘文科, 郑传荣, 赵克俊. 火控雷达技术, 2014, 43(2), 107. 2 Liu Z L, Jia H P, Wang L, et al Spacecraft Environment Engineering, 2016, 33(1), 72(in Chinese). 刘自立, 贾海鹏, 王立, 等. 航天器环境工程, 2016, 33(1), 72. 3 Fu Y, Qin H, Xu X, et al. Journal of Bio-and Tribo-Corrosion, 2022, 8(1), 1. 4 Zhang Y Y, Zhang Y Z, Du S M, et al. Tribology International, 2018, 123, 256. 5 Jones Jr W R, Jansen M J. In:NASA Technical Report NASA-TM-209924. USA, 2000, pp. 1. 6 Santoro C, Hayes R, Herman J. In:AIAA SPACE 2009 Conference & Exposition. Austria, 2009, pp. 23. 7 Hui Y, Liu G M, Yan T, et al. Materials Reports, 2019, 33(13), 2272(in Chinese). 惠阳, 刘贵民, 闫涛, 等. 材料导报, 2019, 33(13), 2272. 8 Sheng M X, Li H X, Ji D H, et al. Journal of East China Jiaotong University, 2021, 38(4), 113. (in Chinese). 沈明学, 李含欣, 季德惠, 等. 华东交通大学学报, 2021, 38(4), 113 9 Zhang Y Z, Yang Z H, Song K X, et al. Friction, 2013, 1(3) , 259. 10 Zhou Y, Peng J F, Wang W J, et al. Wear, 2016, 362, 78. 11 Zhang D K, Duan J J. Journal of Xuzhou Institute of Techology (Natural Sciences Edition), 2014, 29(4), 7(in Chinese). 张德坤, 段俊杰. 徐州工程学院学报(自然科学版), 2014, 29(4), 7. 12 Xi J, Shen X, Chen X. Mechanics & Industry, 2017, 18(5), 511. 13 Rycerz P, Kadiric A. Tribology Letters, 2019, 67(2), 63. 14 Govindarajan N, Gnanamoorthy R. Materials Science and Engineering A, 2007, 445, 259 15 Tong B H, Cheng X M, Sun X Q. Applied Mechanics and Materials, 2013, 271, 1142. 16 He C, Liu J, Wang W, et al. Materials, 2019, 12(24), 4138. 17 Wang J, Wang L Q, Zhang F, et al. Lubrication Engineering, 2009, 34(10), 76(in Chinese). 王俊, 王黎钦, 张锋, 等. 润滑与密封, 2009, 34(10), 76. 18 Yang X Q, Qian S, Chu Y, et al. Journal of Huangshan University, 2017, 19(5), 13(in Chinese). 杨咸启, 钱胜, 褚园, 等. 黄山学院学报, 2017, 19(5), 13. 19 Barber J R. Contact mechanics, Springer International Publishing, USA , 2018, pp. 29. 20 Zhang Y Z, Song K X, Du S M. Current-carrying tribology, Science Press, China, 2016, pp. 225 (in Chinese) . 张永振, 宋克兴, 杜三明. 载流摩擦学, 科学出版社, 2016, pp. 225. 21 Li J, Song C, Zhang Y, et al. Materials Transactions, 2021, 62(3), 453. 22 Kubota Y, Nagasaka S, Miyauchi T, et al. Wear, 2013, 302(1-2), 1492. 23 Deng C, Yin J, Zhang H, et al. Tribology International, 2017, 116, 84. 24 Zhang C, Peng B, Wang L, et al. Wear, 2019, 420, 116. 25 Seo J W, Jun H K, Kwon S J, et al. International Journal of Fatigue, 2016, 83, 184. 26 Zheng X M, Du S M, Zhang Y Z, et al. Lubrication Engineering, 2020, 45(7), 52(in Chinese). 郑晓猛, 杜三明, 张永振, 等. 润滑与密封, 2020, 45(7), 52. 27 Sun Y X, Song C F, Liu Z L, et al. Tribology International, 2020, 143, 106055.