Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040041-6    https://doi.org/10.11896/cldb.22040041
  金属与金属基复合材料 |
滑滚比对Cu/Cu对滚配副载流摩擦性能的影响
曾泽祥1, 宋晨飞1,*, 吴海红2, 吕斌2, 孙超1, 逄显娟1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
2 中船九江精达科技股份有限公司,江西 九江 332000
Effect of Slip-Roll Ratio on the Current-Carrying Tribology Performance of Cu/Cu Rolling Pairs
ZENG Zexiang1, SONG Chenfei1,*, WU Haihong2, LYU Bin2, SUN Chao1, PANG Xianjuan1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 CSSC Jiujiang Jingda Techology Co., Ltd., Jiujiang 332000, Jiangxi, China
下载:  全 文 ( PDF ) ( 30292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 滑滚比是影响滚动接触的重要因素,本工作在不同滑滚比条件下研究了纯铜滚动载流摩擦磨损性能。结果表明:随着滑滚比的增加,平稳后对滚配副的载流摩擦系数增大,接触电阻先降低后趋于稳定,表面磨痕宽度增加。作为对比,同等滑滚比下无电流时对滚配副的摩擦系数变化规律不变但数值更低。随着滑滚比的增加,载流摩擦副表面疲劳程度加剧,次表层塑性变形更明显,表面氧化程度随着材料疲劳剥落而降低。有、无电流的对比结果显示,电流促进表面疲劳和次表层塑性变形,可能与电阻热导致的材料弱化有关。总之,滑滚能够提升导电能力但会引起疲劳损伤,电流的介入也加剧了同等滑滚比下的材料损伤。如何控制滑滚比是未来滚动导电旋转关节设计的关键难题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾泽祥
宋晨飞
吴海红
吕斌
孙超
逄显娟
张永振
关键词:  滑滚比  载流摩擦  接触电阻  磨损    
Abstract: Slip-roll ratio was an important factor affecting the rolling contact. In this work, current-carrying tribology performance of Cu/Cu rolling pairs were studied under different slip-roll conditions. With the increase of slip-roll ratio, the average current-carrying friction coefficient increased, the contact resistance decreased first and then remained stable, and the width of wear mark increased. As a comparison, the mechanical friction coefficient at the same slip-roll ratio without current changed in the similar trends but the value was lower. The increase of slip-roll ratio promoted the fatigue wear, and the degree of surface oxidation decreased due to the fatigue spalling of material. The slip-roll led to obvious plastic deformation of subsurface layer. By comparing the results with and without current, it was found that the current aggravated surface fatigue and plastic deformation of the subsurface which may be related to the Joule heating-induced material weakening. The slip-roll could enhance the electrical conductivity but cause drastic fatigue damage, and the participation of current promoted the material damage. How to control the slip-roll ratio is a key challenge for future design of rolling conductive rotary joints.
Key words:  slip-roll ratio    current-carrying tribology    contact resistance    wear
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TH117.1  
基金资助: 河南省自然科学基金(202300410123);国家自然科学基金(U1804252);河南省高等学校重点科研项目(21A430012)
通讯作者:  *宋晨飞,博士,河南科技大学副教授、硕士研究生导师。研究方向为极端工况下的载流摩擦磨损。发表论文25篇,申报专利19项,主持国家自然科学基金3项、河南省自然科学基金1项、民用航天外协课题4项,主持获上银优秀机械博士论文奖优秀奖、河南省自然科学奖二等奖1项。cfsong@haust.edu.cn   
作者简介:  曾泽祥,2020年7月于河南工业大学获得工学学士学位。现为河南科技大学材料科学与工程学院研究生,主要研究领域为滚动载流摩擦磨损。
引用本文:    
曾泽祥, 宋晨飞, 吴海红, 吕斌, 孙超, 逄显娟, 张永振. 滑滚比对Cu/Cu对滚配副载流摩擦性能的影响[J]. 材料导报, 2023, 37(21): 22040041-6.
ZENG Zexiang, SONG Chenfei, WU Haihong, LYU Bin, SUN Chao, PANG Xianjuan, ZHANG Yongzhen. Effect of Slip-Roll Ratio on the Current-Carrying Tribology Performance of Cu/Cu Rolling Pairs. Materials Reports, 2023, 37(21): 22040041-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040041  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040041
1 Liu W K, Zheng C R, Zhao K J. Fire Control Radar Technology, 2014, 43(2), 107(in Chinese).
刘文科, 郑传荣, 赵克俊. 火控雷达技术, 2014, 43(2), 107.
2 Liu Z L, Jia H P, Wang L, et al Spacecraft Environment Engineering, 2016, 33(1), 72(in Chinese).
刘自立, 贾海鹏, 王立, 等. 航天器环境工程, 2016, 33(1), 72.
3 Fu Y, Qin H, Xu X, et al. Journal of Bio-and Tribo-Corrosion, 2022, 8(1), 1.
4 Zhang Y Y, Zhang Y Z, Du S M, et al. Tribology International, 2018, 123, 256.
5 Jones Jr W R, Jansen M J. In:NASA Technical Report NASA-TM-209924. USA, 2000, pp. 1.
6 Santoro C, Hayes R, Herman J. In:AIAA SPACE 2009 Conference & Exposition. Austria, 2009, pp. 23.
7 Hui Y, Liu G M, Yan T, et al. Materials Reports, 2019, 33(13), 2272(in Chinese).
惠阳, 刘贵民, 闫涛, 等. 材料导报, 2019, 33(13), 2272.
8 Sheng M X, Li H X, Ji D H, et al. Journal of East China Jiaotong University, 2021, 38(4), 113. (in Chinese).
沈明学, 李含欣, 季德惠, 等. 华东交通大学学报, 2021, 38(4), 113
9 Zhang Y Z, Yang Z H, Song K X, et al. Friction, 2013, 1(3) , 259.
10 Zhou Y, Peng J F, Wang W J, et al. Wear, 2016, 362, 78.
11 Zhang D K, Duan J J. Journal of Xuzhou Institute of Techology (Natural Sciences Edition), 2014, 29(4), 7(in Chinese).
张德坤, 段俊杰. 徐州工程学院学报(自然科学版), 2014, 29(4), 7.
12 Xi J, Shen X, Chen X. Mechanics & Industry, 2017, 18(5), 511.
13 Rycerz P, Kadiric A. Tribology Letters, 2019, 67(2), 63.
14 Govindarajan N, Gnanamoorthy R. Materials Science and Engineering A, 2007, 445, 259
15 Tong B H, Cheng X M, Sun X Q. Applied Mechanics and Materials, 2013, 271, 1142.
16 He C, Liu J, Wang W, et al. Materials, 2019, 12(24), 4138.
17 Wang J, Wang L Q, Zhang F, et al. Lubrication Engineering, 2009, 34(10), 76(in Chinese).
王俊, 王黎钦, 张锋, 等. 润滑与密封, 2009, 34(10), 76.
18 Yang X Q, Qian S, Chu Y, et al. Journal of Huangshan University, 2017, 19(5), 13(in Chinese).
杨咸启, 钱胜, 褚园, 等. 黄山学院学报, 2017, 19(5), 13.
19 Barber J R. Contact mechanics, Springer International Publishing, USA , 2018, pp. 29.
20 Zhang Y Z, Song K X, Du S M. Current-carrying tribology, Science Press, China, 2016, pp. 225 (in Chinese) .
张永振, 宋克兴, 杜三明. 载流摩擦学, 科学出版社, 2016, pp. 225.
21 Li J, Song C, Zhang Y, et al. Materials Transactions, 2021, 62(3), 453.
22 Kubota Y, Nagasaka S, Miyauchi T, et al. Wear, 2013, 302(1-2), 1492.
23 Deng C, Yin J, Zhang H, et al. Tribology International, 2017, 116, 84.
24 Zhang C, Peng B, Wang L, et al. Wear, 2019, 420, 116.
25 Seo J W, Jun H K, Kwon S J, et al. International Journal of Fatigue, 2016, 83, 184.
26 Zheng X M, Du S M, Zhang Y Z, et al. Lubrication Engineering, 2020, 45(7), 52(in Chinese).
郑晓猛, 杜三明, 张永振, 等. 润滑与密封, 2020, 45(7), 52.
27 Sun Y X, Song C F, Liu Z L, et al. Tribology International, 2020, 143, 106055.
[1] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[2] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[3] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[4] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[5] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[6] 杨明, 陈晓华, 王自东, 王艳林, 左玲立. 合金元素Ni/Al对45Si2MnCr2Mo超高强韧钢冲击磨料磨损行为的影响[J]. 材料导报, 2023, 37(13): 22030042-8.
[7] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[8] 房尚龙, 宋绪丁, 陈克文, 段亚萍. 片状钛酸钾镁对摩擦材料性能的影响[J]. 材料导报, 2022, 36(8): 20060290-5.
[9] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[10] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[11] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[12] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[13] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[14] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[15] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed