Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040076-11    https://doi.org/10.11896/cldb.22040076
  无机非金属及其复合材料 |
石墨烯及MXenes在氢气传感器中的应用研究进展
王磊1,2, 于新海1,2,*, 袁帅帅1,2, 姚馨淇1,2, 李传东1,2
1 华东理工大学承压系统与安全教育部重点实验室,上海 200237
2 华东理工大学机械与动力工程学院,上海 200237
Research Progress on the Application of Graphene and MXenes in Hydrogen Sensor
WANG Lei1,2, YU Xinhai1,2,*, YUAN Shuaishuai1,2, YAO Xinqi1,2, LI Chuandong1,2
1 MOE Key Laboratory of Pressure Systems and Safety, East China University of Science and Technology, Shanghai 200237, China
2 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
下载:  全 文 ( PDF ) ( 43762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着石油、煤炭和天然气等化石能源的枯竭,氢能在工业生产和交通运输等方面展现了愈加关键的作用。氢能产业对储氢装置在生产、储运、加注和使用全链条过程中提出了“耐高压、高密封及燃爆安全”等性能的全面要求,高灵敏、快速响应、高选择性和高稳定性的氢气传感器是保障氢能系统安全的重要检测装备。高性能氢气传感器成功制备与应用的关键是研发新型的氢敏材料。石墨烯和MXenes是极具代表性的二维平面纳米材料,不仅具有超高的电学和力学性能,而且易于进行功能化修饰且不影响其固有性能,因此在氢气传感领域具有极大的应用潜力。本文综述了石墨烯和MXenes的基本结构、类型和合成方法,总结了其在氢气传感器中的应用研究进展,指出了存在的问题并提出了解决方案,还对氢气传感器未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王磊
于新海
袁帅帅
姚馨淇
李传东
关键词:  氢气传感器  石墨烯  MXenes  功能化材料    
Abstract: With the depletion of fossil energy sources such as oil, coal and natural gas, hydrogen energy has shown an increasingly critical role in industrial production and transportation. The hydrogen energy industry has put forward comprehensive requirements of resistance to high pressure, excellent sealing, and prevention of combustion and explosion in the whole chain process of production, storage, transportation, filling and usage. A hydrogen sensor with high sensitivity, quick response, good selectivity, and strong stability is an important detection apparatus for ensuring the safety of the hydrogen energy system. The development of novel hydrogen-sensitive materials is crucial to fabricate advanced hydrogen sensors. Graphene and MXenes are the most representative two-dimensional planar nanomaterials, which not only have superb electrical and mechanical properties, but also can be modified functionally without affecting their intrinsic properties, thus showing great potential for applications in hydrogen sensing. In this paper, the basic structures, types, and synthesis methods of graphene and MXenes are reviewed. The application research progress of graphene and MXenes in hydrogen sensors is summarized. The existing problems and the corresponding solutions are discussed. The future research directions of hydrogen sensors are introduced.
Key words:  hydrogen sensor    graphene    MXenes    functional material
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB39  
基金资助: 国家自然科学基金(21476073)
通讯作者:  *于新海,华东理工大学机械与动力工程学院教授、博士研究生导师。1996年华东理工大学化工机械专业本科毕业,1999年华东理工大学化工机械专业硕士毕业后到华东理工大学工作至今,2006年华东理工大学化工机械专业博士毕业,2012年前往美国南加州大学访学,现为华东理工大学承压系统与安全教育部重点实验室副主任。目前主要从事先进能源装备技术研究工作。发表论文60余篇,包括Applied Energy、Chemical Engineering Journal、Journal of Cleaner Production、Bioresource Technology等。yxhh@ecust.edu.cn   
作者简介:  王磊,2020年7月于上海应用技术大学获得工学学士学位。现为华东理工大学机械与动力工程学院硕士研究生,在于新海教授的指导下进行研究。目前主要研究领域为先进氢气传感材料与器件。
引用本文:    
王磊, 于新海, 袁帅帅, 姚馨淇, 李传东. 石墨烯及MXenes在氢气传感器中的应用研究进展[J]. 材料导报, 2023, 37(21): 22040076-11.
WANG Lei, YU Xinhai, YUAN Shuaishuai, YAO Xinqi, LI Chuandong. Research Progress on the Application of Graphene and MXenes in Hydrogen Sensor. Materials Reports, 2023, 37(21): 22040076-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040076  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040076
1 Osman A I, Mehta N, Elgarahy A M, et al. Environmental Chemistry Letters, 2022, 20, 153.
2 Li Y, Taghizadeh-Hesary F. Energy Policy, 2022, 160, 112703.
3 Aminov R, Egorov A. International Journal of Energy Research, 2020, 44, 5609.
4 Okolie J A, Patra B R, Mukherjee A, et al. International Journal of Hydrogen Energy, 2021, 46, 8885.
5 Zhao F, Mu Z, Hao H, et al. Energy Technology, 2020, 8, 2000179.
6 Upham D C, Agarwal V, Khechfe A, et al. Science, 2017, 358, 917.
7 Zhou X, Liu Y, Jin Z, et al. Advanced Science, 2021, 8, 2002465.
8 Lin L, Yu Q, Peng M, et al. Journal of American Chemical Society, 2021, 143, 309.
9 Chi J, Yu H. Chinese Journal of Catalysis, 2018, 39, 390.
10 Tarhan C, Çil M A. Journal of Energy Storage, 2021, 40, 102676.
11 Zhang H, Zhu Y, Liu Q, et al. Applied Energy, 2022, 306, 118131.
12 Perera S M, Hettiarachchi S R, Hewage J W. ACS Omega, 2022, 7, 2316.
13 Li Z, Wang S, Gao M, et al. ACS Applied Energy Materials, 2022, 5, 1226.
14 Rowberg A J E, Weston L, Van de Walle C G. The Journal of Physical Chemistry C, 2021, 125, 2250.
15 Anastasopoulou A, Furukawa H, Barnett B R, et al. Energy & Environmental Science, 2021, 14, 1083.
16 Van Hoecke L, Laffineur L, Campe R, et al. Energy & Environmental Science, 2021, 14, 815.
17 Multi-Year Research, Development, and Demonstration Plan, 576 2011-2020. Section 3. 7 Hydrogen Safety, Codes and Standards. Department of Energy, Washington, DC, 2015.
18 Lee H, Kim J, Moon H, et al. Advanced Materials, 2021, 33, 2005929.
19 Hassan M, Abbas G, Li N, et al. Advanced Materials Technologies, 2022, 7, 2100773.
20 Kaltenbrunner M, Adam G, Głowacki E D, et al. Nature Materials, 2015, 14, 1032.
21 Sung S, Park S, Lee W J, et al. ACS Applied Materials & Interfaces, 2015, 7, 7456.
22 Zhu P, Gu S, Shen X, et al. Nano Letters, 2016, 16, 871.
23 Vuluga Z, Sanporean C G, Panaitescu D M, et al. Polymers, 2021, 13, 3560.
24 Xin G, Rong Y, Huang Y, et al. Journal of Materials Science, 2021, 56, 16167.
25 Ji Y, Zeigler D F, Lee D S, et al. Nature Communications, 2013, 4, 2707.
26 Qian K, Tay R Y, Lin M F, et al. ACS Nano, 2017, 11, 1712.
27 Hübert T, Boon-Brett L, Black G, et al. Sensors and Actuators B:Chemical, 2011, 157, 329.
28 Chauhan P S, Bhattacharya S. International Journal of Hydrogen Energy, 2019, 44, 26076.
29 Nguyen T T D, Van Dao D, Lee I H, et al. Journal of Alloys and Compounds, 2021, 854, 157280.
30 Yang F, Kung S C, Cheng M, et al. ACS Nano, 2010, 4, 5233.
31 Pham T K N, Brown J J. ChemistrySelect, 2020, 5, 7277.
32 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
33 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22, 3906.
34 Eigler S, Hirsch A. Angewandte Chemie International Edition, 2014, 53, 7720.
35 Novoselov K S, Fal′ko V I, Colombo L, et al. Nature, 2012, 490, 192.
36 Wu S, He Q, Tan C, et al. Small, 2013, 9, 1160.
37 Kim Y H, Kim S J, Kim Y J, et al. ACS Nano, 2015, 9, 10453.
38 Cheng C, Li S, Thomas A, et al. Chemical Reviews, 2017, 117, 1826.
39 Kumar N, Salehiyan R, Chauke V, et al. FlatChem, 2021, 27, 100224.
40 Pu N W, Wang C A, Sung Y, et al. Materials Letters, 2009, 63, 1987.
41 Li D, Müller M B, Gilje S, et al. Nature Nanotechnology, 2008, 3, 101.
42 Zaaba N I, Foo K L, Hashim U, et al. Procedia Engineering, 2017, 184, 469.
43 Chen J, Li Y, Huang L, et al. Carbon, 2015, 81, 826.
44 Chen J, Yao B, Li C, et al. Carbon, 2013, 64, 225.
45 Sohail M, Saleem M, Ullah S, et al. Modern Electronic Materials, 2017, 3, 110.
46 Fang S, Lin Y, Hu Y H. ACS Sustainable Chemistry & Engineering, 2019, 7, 12671.
47 Dua V, Surwade S P, Ammu S, et al. Angewandte Chemie International Edition, 2010, 122, 2200.
48 Edwards R S, Coleman K S. Nanoscale, 2013, 5, 38.
49 Muñoz R, Gómez-Aleixandre C. Chemical Vapor Deposition, 2013, 19, 297.
50 Eigler S, Enzelberger-Heim M, Grimm S, et al. Advanced Materials, 2013, 25, 3583.
51 Somani P R, Somani S P, Umeno M. Chemical Physics Letters, 2006, 430, 56.
52 Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Advanced Materials, 2009, 21, 4726.
53 Li Y, Hu Y, Zhao Y, et al. Advanced Materials, 2011, 23, 776.
54 Wang M, Huang M, Luo D, et al. Nature, 2021, 596, 519.
55 Qiu Z, Chen X, Huang Y, et al. Angewandte Chemie International Edition, 2022, 61, e202116955.
56 VahidMohammadi A, Rosen J, Gogotsi Y. Science, 2021, 372, eabf1581.
57 Fu B, Sun J, Wang C, et al. Small, 2021, 17, 2006054.
58 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 4248.
59 Ahmed B, Ghazaly A E, Rosen J. Advanced Functional Materials, 2020, 30, 2000894.
60 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature, 2014, 516, 78.
61 Han M, Shuck C E, Rakhmanov R, et al. ACS Nano, 2020, 14, 5008.
62 Iqbal A, Sambyal P, Koo C M. Advanced Functional Materials, 2020, 30, 2000883.
63 Li Z, Wu Y. Small, 2019, 15, 1804736.
64 Liu Z, Alshareef H N. Advanced Electronic Materials, 2021, 7, 2100295.
65 Ma C, Ma M, Si C, et al. Advanced Functional Materials, 2021, 31, 2009524.
66 Sheikh N, Tahir M B, Fatima N, et al. International Journal of Energy Research, 2021, 45, 17563.
67 Wang Y, Guo T, Tian Z, et al. Advanced Materials, 2022, 34, 2108560.
68 Wu X, Ma P, Sun Y, et al. Electroanalysis, 2021, 33, 1827.
69 Li R, Zhang L, Shi L, et al. ACS Nano, 2017, 11, 3752.
70 Wei Y, Zhang P, Soomro R A, et al. Advanced Materials, 2021, 33, 2103148.
71 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29, 7633.
72 Zhang T, Pan L, Tang H, et al. Journal of Alloys and Compounds, 2017, 695, 818.
73 Wang B, Sun L, Schneider-Ramelow M, et al. Micromachines, 2021, 12, 1429.
74 Jiang J, Zhang Y, Shen Q, et al. Nano Energy, 2021, 89, 106453.
75 Krishnakumar T, Kiruthiga A, Jozwiak E, et al. Ceramics International, 2020, 46, 17076.
76 Del Orbe Henriquez D, Cho I, Yang H, et al. ACS Applied Nano Materials, 2021, 4, 7.
77 Hermawan A, Asakura Y, Yin S. International Journal of Minerals, Me-tallurgy and Materials, 2020, 27, 1560.
78 Schwandt C. Sensors and Actuators B:Chemical, 2013, 187, 227.
79 Chen K, Yuan D, Zhao Y. Optics and Laser Technology, 2021, 137, 106808.
80 Lee J, Koo H, Kim S Y, et al. Sensors and Actuators B:Chemical, 2021, 327, 128930.
81 Nie L, Guo X, Gao C, et al. Journal of Materials Science:Materials in Electronics, 2022, 33, 1604.
82 Li D, Le X, Pang J, et al. Journal of Micromechanics and Microenginee-ring, 2019, 29, 045007.
83 Zeng X Q, Latimer M L, Xiao Z L, et al. Nano Letters, 2011, 11, 262.
84 Li Q, Wang Q, Li L, et al. Advanced Energy Materials, 2020, 10, 2000470.
85 Tong F, Lian Y, Han J. International Journal of Environmental Research and Public Health, 2016, 13, 1254.
86 Rani S, Kumar N, Sharma Y. Journal of Physics:Energy, 2021, 3, 032017.
87 Zhang Y, Zhu P, Li G, et al. ACS Applied Materials Interfaces, 2014, 6, 560.
88 Kwon O S, Park E, Kweon O Y, et al. Talanta, 2010, 82, 1338.
89 Shang J, Xue W, Ji Z, et al. Nanoscale, 2017, 9, 7037.
90 Zhang Y, Ma N, Li J, et al. Advanced Materials Interfaces, 2021, 8, 2001966.
91 Li N, Jiang Y, Xiao Y, et al. Nanoscale, 2019, 11, 21522.
92 Orangi J, Hamade F, Davis V A, et al. ACS Nano, 2020, 14, 640.
93 Zhang J, Zhang G, Zhou T, et al. Advanced Functional Materials, 2020, 30, 1910000.
94 Koo W T, Qiao S, Ogata A F, et al. ACS Nano, 2017, 11, 9276.
95 Du L, Feng D, Xing X, et al. Nanoscale, 2019, 11, 21074.
96 Wang W, Liu X, Mei S, et al. Sensors and Actuators B:Chemical, 2019, 287, 157.
97 Xu H, Liu Y, Liu H, et al. Journal of Alloys and Compounds, 2021, 851, 156844.
98 Weber M, Kim J Y, Lee J H, et al. Journal of Materials Chemistry A, 2019, 7, 8107.
99 Yin X T, Zhou W D, Li J, et al. Journal of Alloys and Compounds, 2019, 805, 229.
100 Lee J, Koo H, Kim S Y, et al. Sensors and Actuators B:Chemical, 2021, 327, 128930.
101 Cho S H, Suh J M, Jeong B, et al. Chemical Engineering Journal, 2022, 446, 136862.
102 Wang T, Huang D, Yang Z, et al. Nano-Micro Letters, 2016, 8, 95.
103 Varghese S S, Lonkar S, Singh K K, et al. Sensors and Actuators B:Chemical, 2015, 218, 160.
104 Wu W, Liu Z, Jauregui L A, et al. Sensors and Actuators B:Chemical, 2010, 150, 296.
105 Ilnicka A, Lukaszewicz J P. Processes, 2020, 8, 633.
106 Kathiravan D, Huang B R, Saravanan A. ACS Applied Materials Interfaces, 2017, 9, 12064.
107 Li R, Ma X, Li J, et al. Nature Communications, 2021, 12, 1587.
108 Chen M, Zou L, Zhang Z, et al. Carbon, 2018, 130, 281.
109 Al-Mashat L, Shin K, Kalantar-Zadeh K, et al. Journal of Physical Chemistry C, 2010, 114, 16168.
110 Lim J, Hwang S, Yoon H S, et al. Carbon, 2013, 63, 3.
111 Hwang T Y, Go G M, Park S, et al. ACS Applied Materials Interfaces, 2019, 11, 47015.
112 Ma J, Zhou Y, Bai X, et al. Nanoscale, 2019, 11, 15821.
113 Cho S Y, Ahn H, Park K, et al. ACS Sensors, 2018, 3, 1876.
114 Favier I, Pla D, Gómez M. Chemical Reviews, 2020, 120, 1146.
115 Fan J, Du H, Zhao Y, et al. ACS Catalysis, 2020, 10, 13560.
116 Huang L, Shen B, Lin H, et al. Journal of American Chemical Society, 2022, 144, 4792.
117 Li X, Liu Y, Hemminger J C, et al. ACS Nano, 2015, 9, 3215.
118 Sharma B, Kim J S. International Journal of Hydrogen Energy, 2018, 43, 11397.
119 Kim M, Lee S M, Jeon J W, et al. ACS Applied Materials Interfaces, 2021, 13, 49128.
120 Kim K, Lee T, Kwon Y, et al. Nature, 2016, 535, 131.
121 Sun Z, Fang S, Hu Y H. Chemical Reviews, 2020, 120, 10336.
122 Guo B, Liang G, Yu S, et al. Energy Storage Materials, 2021, 39, 146.
123 Mo R, Rooney D, Sun K, et al. Nature Communications, 2017, 8, 13949.
124 Zhai Z, Zhang X, Hao X, et al. Advanced Materials Technologies, 2021, 6, 2100127.
125 Liu W, Yin R, Xu X, et al. Advanced Science, 2019, 6, 1802373.
126 Zhang Y, Xu J, Zhou J, et al. Chinese Journal of Catalysis, 2022, 43, 971.
127 Hu L, Bui V T, Krishnamurthy A, et al. Science Advances, 2022, 8, eabl8160.
128 Kumar A, Mohammadi M M, Zhao Y, et al. ACS Applied Nano Materials, 2021, 4, 8081.
129 Ho D H, Choi Y Y, Jo S B, et al. Advanced Materials, 2021, 33, 2005846.
130 Pei Y, Zhang X, Hui Z, et al. ACS Nano, 2021, 15, 3996.
131 Lee E, Vahid M A, Yoon Y S, et al. ACS Sensors, 2019, 4, 1603.
132 Chachuli S A M, Hamidon M N, Ertugrul M, et al. Journal of Alloys and Compounds, 2021, 882, 160671.
133 Zhou J, Shokouh S H H, Komsa H P, et al. Advanced Materials Technologies, 2022, 7, 2101565.
134 Zhu Z, Liu C, Jiang F, et al. Journal of Hazardous Materials, 2020, 399, 123054.
135 Doan T H P, Hong W G, Noh J S. RSC Advances, 2021, 11, 7492.
136 Wu J, Guo Y, Wang Y, et al. Sensors and Actuators B:Chemical, 2022, 361, 131693.
137 Agrawal A V, Kumar R, Yang G, et al. International Journal of Hydrogen Energy, 2020, 45, 9268.
138 Jaiswal J, Tiwari P, Singh P, et al. Sensors and Actuators B:Chemical, 2020, 325, 128800.
139 Gottam S R, Tsai C T, Wang L W, et al. Applied Surface Science, 2020, 506, 144981.
140 Lee S, Kang Y, Lee J, et al. Applied Surface Science, 2020, 571, 151256.
141 Abun A, Huang B R, Saravanan A, et al. ACS Applied Nano Materials, 2020, 3, 12139.
142 Saravanan A, Huang B R, Chu J P, et al. Sensors and Actuators B:Chemical, 2019, 292, 70.
143 Hao L, Liu H, Xu H, et al. Sensors and Actuators B:Chemical, 2019, 283, 740.
144 Ibrahim A, Memon U B, Duttagupta S P, et al. International Journal of Hydrogen Energy, 2021, 46, 23962.
145 Koo W T, Cho H J, Kim D H, et al. ACS Nano, 2020, 14, 14284.
[1] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[4] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[5] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[6] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[7] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[8] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[9] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[10] 陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
[11] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[12] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[13] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[14] 卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
[15] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed