Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010233-7    https://doi.org/10.11896/cldb.22010233
  无机非金属及其复合材料 |
砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响
刘晋铭1, 张寿松2, 俞煌1, 梅勇1,*
1 中国人民解放军军事科学院国防工程研究院,北京 100036
2 天津大学建筑工程学院,天津 300354
Effect of Sand Binder Ratio on Dynamic Mechanical Properties of Seawater Mixed Coral Aggregate Concrete
LIU Jinming1, ZHANG Shousong2, YU Huang1, MEI Yong1,*
1 National Defense Engineering Research Institute,AMS,PLA,Beijing 100036,China
2 School of Civil Engineering,Tianjin University,Tianjin 300354,China
下载:  全 文 ( PDF ) ( 4613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 珊瑚岛礁工程建设对于保障国家海洋权益具有重大战略意义。随着海洋资源的开发和建设,利用珊瑚骨料制备混凝土已在岛礁工程中得到广泛应用。为探究砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响,基于霍普金森压杆试验分析不同应变率、不同砂胶比(0.8—1.2)下试件的破坏模式、动态压缩强度、动态弹性模量和韧性指标等的变化规律。研究结果表明:动态压缩强度随砂胶比增大小幅度提高,当应变率为120 s-1时,动态压缩强度提高6.7%;动态弹性模量变化规律与动态压缩强度变化一致,当应变率大于80 s-1时,提高幅度最高可达24.1%;韧性指标和相对韧性指标随砂胶比增大而增大,当砂胶比增加到1.2时两者分别增大13.4%和37.8%。此外,通过试件破坏形态分析,海水拌合全珊瑚骨料混凝土在承受相同冲击荷载时,低应变率时试样破坏差异性不大,高应变率下砂胶比越高的混凝土破坏程度越低。由此可见砂胶比的增加确实会提升海水拌合全珊瑚骨料混凝土的抗冲击性能,导致其抗冲击性能、延性和抗压强度提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晋铭
张寿松
俞煌
梅勇
关键词:  海水拌合全珊瑚骨料混凝土  冲击加载  砂胶比  应变率    
Abstract: The construction of coral island reef project is of great strategic significance to protect national marine rights and interests. With the development and construction of marine resources, the preparation of concrete with coral aggregate has been widely used in island and reef engineering. The research on its basic mechanical properties and engineering application has also become one of the current hot topics. In order to explore the influence of sand binder ratio on the dynamic mechanical properties of seawater mixed full coral aggregate concrete, the variation laws of failure mode, dynamic compressive strength, dynamic elastic modulus and toughness index of specimens with different sand binder ratio (0.8—1.2) under different strain rates were analyzed based on Hopkinson compression bar test. The results showed that the dynamic compressive strength increased with the increase of sand binder ratio. When the strain rate was 120 s-1, the increase proportion of dynamic compressive strength was 6.7%. The variation law of dynamic elastic modulus was consistent with the change of strength, which increased with the increase of sand binder ratio. When the strain rate was greater than 80 s-1, the increase proportion reached 24.1%. The toughness index and relative toughness index increased with the increase of sand binder ratio. When the sand binder ratio increased to 1.2, the increase proportion was 13.4% and 37.8% respectively. In addition, through the analysis of specimen failure mode, when seawater mixed all coral aggregate concrete was subjected to the same impact load, there was little difference in specimen failure at low strain rate. Under high strain rate, the higher the sand binder ratio, the lower the damage degree of concrete. It can be seen that the increase of sand binder ratio will certainly improve the impact resistance of seawater mixed all coral aggregate concrete, resulting in the improvement of impact resistance, ductility and compressive strength.
Key words:  seawater mixed full coral aggregate concrete    impact load    sand binder ratio    strain rate
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51709200)
通讯作者:  *梅勇,2022年获得博士学位。现为工程师,主要研究方向为工程防护,以第一作者或通信作者发表论文20余篇(SCI检索10余篇)。meiyong1990@qq.com   
作者简介:  刘晋铭,2018年获得博士学位。现为工程师,目前主要研究方向为工程特种材料,发表论文20余篇。
引用本文:    
刘晋铭, 张寿松, 俞煌, 梅勇. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 22010233-7.
LIU Jinming, ZHANG Shousong, YU Huang, MEI Yong. Effect of Sand Binder Ratio on Dynamic Mechanical Properties of Seawater Mixed Coral Aggregate Concrete. Materials Reports, 2023, 37(18): 22010233-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010233  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010233
1 Chai Y, Niu Y, Li W J, et al. Materials Reports, 2021, 35(15), 15134 (in Chinese).
柴源, 牛勇, 李文杰, 等. 材料导报, 2021, 35(15), 15134.
2 Feng N Q.Architecture Technology, 2004(1), 20 (in Chinese).
冯乃谦. 建筑技术, 2004(1), 20.
3 Shi B, Li J F. Architecture Technology, 2004(1), 23 (in Chinese).
史波, 李剑锋. 建筑技术, 2004(1), 23.
4 Ma L J, Chen X X, Zhao Y T, et al. Journal of the Chinese Ceramic So-ciety, 2019, 47(2), 214 (in Chinese).
马林建, 陈欣星, 赵跃堂, 等. 硅酸盐学报, 2019, 47(2), 214.
5 Cai X G, Zhao Q, Chen H S. Journal of the Chinese Ceramic Society, 2021, 49(8), 1753 (in Chinese).
蔡新光, 赵青, 陈惠苏. 硅酸盐学报, 2021, 49(8), 1753.
6 Da B, Yu H, Ma H, et al. Construction and Building Materials, 2016, 122,81.
7 Gao Y, Wei Z B, Sun X. Journal of Naval University of Engineering, 2017, 29(1), 64 (in Chinese).
高屹, 韦灼彬, 孙潇. 海军工程大学学报, 2017, 29(1), 64.
8 Shi Y M. Experimental and numerical simulation of impact compression of concrete after high temperature. Master's Thesis, Chang'an University, China, 2017(in Chinese).
石蕴美. 混凝土高温后冲击压缩性能试验及数值模拟研究. 硕士学位论文, 长安大学, 2017.
9 Wu J W, Ma L J, Kong X L, et al. Journal of Building Materials, 2020, 23(3), 581 (in Chinese).
吴家文, 马林建, 孔新立, 等. 建筑材料学报, 2020, 23(3), 581.
10 Wang Y G. Port and Waterway Engineering, 1988(9), 46 (in Chinese).
王以贵. 水运工程, 1988(9), 46.
11 Zhou Y X, Xia K, Li X B, et al. International Journal of Rock Mechanics and Mining Sciences, 2012, 49,105.
12 Liang Y N, Chen B C, Ji T, et al. Journal of Fuzhou University(Natural Science Edition), 2011, 39(5), 748 (in Chinese).
梁咏宁, 陈宝春, 季韬, 等. 福州大学学报(自然科学版), 2011, 39(5), 748.
13 Hu A X, Liang X W, Li D Y, et al. Journal of Hunan University(Natural Sciences), 2018, 45(3), 39 (in Chinese).
胡翱翔, 梁兴文, 李东阳, 等. 湖南大学学报(自然科学版), 2018, 45(3), 39.
14 Gao L S, Xu Y, Wu B B, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2), 3826 (in Chinese).
高龙山, 徐颖, 吴帮标, 等.岩石力学与工程学报, 2018, 37(S2), 3826.
15 Hu S S, Wang D R. Explosion and Shock Waves, 2002(3), 242 (in Chinese).
胡时胜, 王道荣. 爆炸与冲击, 2002(3), 242.
16 Zhang H, Gao Y W, Li F, et al. Journal of Central South University (Science and Technology), 2013, 44(8), 3464 (in Chinese).
张华, 郜余伟, 李飞, 等. 中南大学学报(自然科学版), 2013, 44(8), 3464.
17 Ma L, Li Z, Wang M, et al. Powder Technology, 2019,342, 961.
18 Cai X, Zhou Z L, Zang H Z, et al. Engineering Geology, DOI:10.1016/j.enggeo.2020.105760.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[3] 徐长锋, 周友行, 肖加其, 李昱泽, 易倩. 长径比和应变率对海泡石的破碎能耗影响研究[J]. 材料导报, 2022, 36(Z1): 20120211-5.
[4] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[5] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[6] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[7] 郭伟娜, 张鹏, 鲍玖文, 孙治国, 田玉鹏, 赵凯月, 赵铁军. 应变硬化水泥基复合材料动力学性能研究现状与进展[J]. 材料导报, 2021, 35(17): 17199-17209.
[8] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[9] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[10] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[11] 胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
[12] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[13] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[14] 杜成鑫, 杜忠华, 高光发, 徐立志, 程春, 王晓东. 钨丝/锆基非晶复合材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2252-2266.
[15] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed