Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110124-7    https://doi.org/10.11896/cldb.21110124
  无机非金属及其复合材料 |
具有持续反应活性的g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+复合材料的光学-催化行为研究
杨晓宇1, 唐伯明2,*, 曹雪娟3, 黄铭轩2, 郝增恒4
1 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 重庆交通大学材料科学与工程学院,重庆 400074
4 重庆市智翔铺道技术工程有限公司 重庆 401336
Optical-Photocatalysis Behavior of g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ Composite with a Persistent Reaction Activity
YANG Xiaoyu1, TANG Boming2,*, CAO Xuejuan3, HUANG Mingxuan2, HAO Zengheng4
1 National & Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
4 Chongqing Zhi Xiang Paving Technology Engineering Co., Ltd., Chongqing 401336, China
下载:  全 文 ( PDF ) ( 8013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为促进环境友好型光催化技术的应用推广,通过热解聚合方式将g-C3N4负载于多孔Sr2MgSi2O7:Eu2+,Dy3+蓝色长余辉荧光粉上,制备具有持续反应活性的g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+复合材料。首次采用累积污染物降解效率等一系列指标评价材料在光照及暗态下综合去除污染物效果。通过微观表征手段和NO去除试验研究了单组分复配质量比对复合材料的光学及催化性能的影响。结果表明,g-C3N4的复合对Sr2MgSi2O7:Eu2+,Dy3+的荧光强度和余辉性能产生了不利影响;但光照下,提高的光生载流子分离效率和光吸收能力使复合材料的光催化活性增强;暗态下,内在光源Sr2MgSi2O7:Eu2+,Dy3+的存在赋予了复合材料持续去除NO的能力,该能力的持续时间与余辉亮度、光催化活性有关。本研究有助于推动持续活性光催化体系的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晓宇
唐伯明
曹雪娟
黄铭轩
郝增恒
关键词:  光催化  长余辉  g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+  NO去除  持续反应活性    
Abstract: In order to promote the application and popularization of environment-friendly photocatalytic technology, g-C3N4 was loaded on porous Sr2MgSi2O7:Eu2+, Dy3+ blue long afterglow phosphors by pyrolysis polymerization to prepare g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ composites with a persistent reaction activity. A series of indicators such as cumulative pollutant degradation efficiency were used for the first time to evaluate the comprehensive pollutant purification effect of materials under illumination and dark conditions. The effects of the mass ratio of components on the optical and catalytic properties of the composites were studied by means of micro characterization and NO removal tests. The results show that g-C3N4 has an adverse effect on the fluorescence intensity and afterglow properties of Sr2MgSi2O7:Eu2+, Dy3+. But under illumination, the photocatalytic activity of the composite is enhanced due to the improved separation efficiency of photoinduced carriers and light absorption capacity. In the dark, Sr2MgSi2O7:Eu2+, Dy3+ as an internal light source endows the composite with the ability to continuously remove NO and the duration of this ability is related to the afterglow brightness and photocatalytic activity. This study is helpful to promote the development of photocatalytic system with a continuously active.
Key words:  photocatalysis    long afterglow    g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+    NO removal    persistent reaction activity
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  X511  
  O612  
基金资助: 国家自然科学基金(51978115);重庆市研究生联合培养基地建设项目(201907)
通讯作者:  * 唐伯明,重庆交通大学土木工程学院教授、博士研究生导师。1985年南京工学院土木工程专业本科毕业,1987年东南大学道路与交通工程专业硕士毕业,1990年东南大学道路与交通工程专业博士毕业,2004年之后到重庆交通大学工作至今。被评为“国家百千万人才工程”第一、二层次人选。目前主要从事环境友好型路面材料、交通战略强国等方面的研究工作。已发表论文100余篇,包括Materials Research Express、Journal of Cleaner Production、Transportation Research Record、Journal of Materials in Civil Engineering、Environmental Technology等。tangboming6210@163.com   
作者简介:  杨晓宇,2015年7月、2018年6月及2021年12月于重庆交通大学分别获得工学学士学位、硕士学位及博士学位。现在于重庆交通大学交通运输工程流动站做博士后研究。目前主要从事功能性材料研发及应用方面的工作。已发表论文10余篇,包括Journal of Photochemistry and Photobiology A: Chemistry、Transportation Research Record、Materials Research Express、Construction and Building Materials、Journal of Materials in Civil Engineering等。
引用本文:    
杨晓宇, 唐伯明, 曹雪娟, 黄铭轩, 郝增恒. 具有持续反应活性的g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+复合材料的光学-催化行为研究[J]. 材料导报, 2023, 37(12): 21110124-7.
YANG Xiaoyu, TANG Boming, CAO Xuejuan, HUANG Mingxuan, HAO Zengheng. Optical-Photocatalysis Behavior of g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ Composite with a Persistent Reaction Activity. Materials Reports, 2023, 37(12): 21110124-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110124  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110124
1 Cui J, Wang G, Liu W, et al. Fuel, 2021, 290, 120066.
2 Deng F, Shi H, Guo Y, et al. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100465.
3 Xu N, Cai B, Li Q, et al. Journal of Alloys and Compounds, 2021, 871, 159565.
4 Aliste M, Garrido I, Flores P, et al. Journal of Environmental Management, 2020, 266, 110565.
5 Chung K H, Park Y K, Cho E B, et al. International Journal of Hydrogen Energy, 2020, 45, 24028.
6 Baniasadi E, Dincer I, Naterer G F. International Journal of Hydrogen Energy, 2013, 38, 9158.
7 Shearer C J, Hisatomi T, Domen K, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112757.
8 Tasleem S, Tahir M. International Journal of Hydrogen Energy, 2020, 45, 19078.
9 Ai Z, Lee S, Huang Y, et al. Journal of Hazardous Materials, 2010, 179, 141.
10 Jiang Q, Qi T, Yang T, et al. Building and Environment, 2019, 158, 94.
11 Mamaghani A H, Haghighat F, Lee C S. Building and Environment, 2021, 189, 107518.
12 Dhawle R, Frontistis Z, Mantzavinos D, et al. Chemical Engineering Journal Advances, 2021, 6, 100109.
13 Chen Y F. Design and spectral properties of low-energy light excitable near-infrared persistent phosphors. Ph. D. Thesis, Shandong University, China, 2018 (in Chinese).
陈亚飞. 低能光激发的近红外长余辉发光材料的设计与光学性能研究. 博士学位论文, 山东大学, 2018.
14 Wu Z K, Li J R, Pan Y, et al. Technology of Highway and Transport, 2019, 35(5), 25(in Chinese).
吴卓科, 李菁若, 潘岳, 等. 公路交通技术, 2019, 35(5), 25.
15 Zhang J, Chen G B, Chen H B, et al. Optical Materials, 2019, 88, 333.
16 Xu J, Tanabe S. Journal of Luminescence, 2019, 205, 581.
17 Li S, Wang W, Chen Y, et al. Catalysis Communications, 2009, 10, 1048.
18 Li H H, Yin S, Wang Y H, et al. Journal of Catalysis, 2012, 286, 273.
19 Li H H, Yin S, Sato T. Applied Catalysis B: Environmental, 2011, 106, 586.
20 Li H H, Yin S, Wang Y H, et al. Journal of Molecular Catalysis A: Chemical, 2012, 363-364, 129.
21 Kim J S, Sung H J, Kim B J. Applied Surface Science, 2015, 334, 151.
22 Chu Y C, Lin T J, Lin Y R, et al. Carbon, 2020, 169, 338.
23 Wang Y, Liu L, Wu D, et al. Chinese Journal of Catalysis, 2019, 40, 1198.
24 He L, Jia B, Che L, et al. Journal of Luminescence, 2016, 172, 317.
25 Cheng X. Preparation and photoelectrochemical properties of FeVO4 and g-C3N4 semiconductor materials. Master’s Thesis, Qufu Normal University, China, 2018 (in Chinese).
程新. FeVO4与g-C3N4半导体材料的制备及其光电化学性能研究. 硕士学位论文, 曲阜师范大学, 2018.
26 Tang B M, Yang X Y, Cao X J, et al. Materials Research Express, 2019, 6, 125509.
27 Du H, Shan W, Wang L, et al. Journal of Luminescence, 2016, 176, 272.
28 Som S, Dutta S, Kumar V, et al. Journal of Alloys and Compounds, 2015, 622, 1068.
[1] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[2] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[5] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[6] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[7] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[8] 王育华, 冯鹏, 丁松松, 马西麟, 曹君龙, 张泓喆, 李根, 郭海洁. 长余辉材料的设计及机理研究进展[J]. 材料导报, 2023, 37(3): 22110279-13.
[9] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[10] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[11] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[12] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[13] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[14] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[15] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed