Optical-Photocatalysis Behavior of g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ Composite with a Persistent Reaction Activity
YANG Xiaoyu1, TANG Boming2,*, CAO Xuejuan3, HUANG Mingxuan2, HAO Zengheng4
1 National & Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China 2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China 3 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China 4 Chongqing Zhi Xiang Paving Technology Engineering Co., Ltd., Chongqing 401336, China
Abstract: In order to promote the application and popularization of environment-friendly photocatalytic technology, g-C3N4 was loaded on porous Sr2MgSi2O7:Eu2+, Dy3+ blue long afterglow phosphors by pyrolysis polymerization to prepare g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ composites with a persistent reaction activity. A series of indicators such as cumulative pollutant degradation efficiency were used for the first time to evaluate the comprehensive pollutant purification effect of materials under illumination and dark conditions. The effects of the mass ratio of components on the optical and catalytic properties of the composites were studied by means of micro characterization and NO removal tests. The results show that g-C3N4 has an adverse effect on the fluorescence intensity and afterglow properties of Sr2MgSi2O7:Eu2+, Dy3+. But under illumination, the photocatalytic activity of the composite is enhanced due to the improved separation efficiency of photoinduced carriers and light absorption capacity. In the dark, Sr2MgSi2O7:Eu2+, Dy3+ as an internal light source endows the composite with the ability to continuously remove NO and the duration of this ability is related to the afterglow brightness and photocatalytic activity. This study is helpful to promote the development of photocatalytic system with a continuously active.
通讯作者:
* 唐伯明,重庆交通大学土木工程学院教授、博士研究生导师。1985年南京工学院土木工程专业本科毕业,1987年东南大学道路与交通工程专业硕士毕业,1990年东南大学道路与交通工程专业博士毕业,2004年之后到重庆交通大学工作至今。被评为“国家百千万人才工程”第一、二层次人选。目前主要从事环境友好型路面材料、交通战略强国等方面的研究工作。已发表论文100余篇,包括Materials Research Express、Journal of Cleaner Production、Transportation Research Record、Journal of Materials in Civil Engineering、Environmental Technology等。tangboming6210@163.com
作者简介: 杨晓宇,2015年7月、2018年6月及2021年12月于重庆交通大学分别获得工学学士学位、硕士学位及博士学位。现在于重庆交通大学交通运输工程流动站做博士后研究。目前主要从事功能性材料研发及应用方面的工作。已发表论文10余篇,包括Journal of Photochemistry and Photobiology A: Chemistry、Transportation Research Record、Materials Research Express、Construction and Building Materials、Journal of Materials in Civil Engineering等。
引用本文:
杨晓宇, 唐伯明, 曹雪娟, 黄铭轩, 郝增恒. 具有持续反应活性的g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+复合材料的光学-催化行为研究[J]. 材料导报, 2023, 37(12): 21110124-7.
YANG Xiaoyu, TANG Boming, CAO Xuejuan, HUANG Mingxuan, HAO Zengheng. Optical-Photocatalysis Behavior of g-C3N4/Sr2MgSi2O7:Eu2+, Dy3+ Composite with a Persistent Reaction Activity. Materials Reports, 2023, 37(12): 21110124-7.
1 Cui J, Wang G, Liu W, et al. Fuel, 2021, 290, 120066. 2 Deng F, Shi H, Guo Y, et al. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100465. 3 Xu N, Cai B, Li Q, et al. Journal of Alloys and Compounds, 2021, 871, 159565. 4 Aliste M, Garrido I, Flores P, et al. Journal of Environmental Management, 2020, 266, 110565. 5 Chung K H, Park Y K, Cho E B, et al. International Journal of Hydrogen Energy, 2020, 45, 24028. 6 Baniasadi E, Dincer I, Naterer G F. International Journal of Hydrogen Energy, 2013, 38, 9158. 7 Shearer C J, Hisatomi T, Domen K, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112757. 8 Tasleem S, Tahir M. International Journal of Hydrogen Energy, 2020, 45, 19078. 9 Ai Z, Lee S, Huang Y, et al. Journal of Hazardous Materials, 2010, 179, 141. 10 Jiang Q, Qi T, Yang T, et al. Building and Environment, 2019, 158, 94. 11 Mamaghani A H, Haghighat F, Lee C S. Building and Environment, 2021, 189, 107518. 12 Dhawle R, Frontistis Z, Mantzavinos D, et al. Chemical Engineering Journal Advances, 2021, 6, 100109. 13 Chen Y F. Design and spectral properties of low-energy light excitable near-infrared persistent phosphors. Ph. D. Thesis, Shandong University, China, 2018 (in Chinese). 陈亚飞. 低能光激发的近红外长余辉发光材料的设计与光学性能研究. 博士学位论文, 山东大学, 2018. 14 Wu Z K, Li J R, Pan Y, et al. Technology of Highway and Transport, 2019, 35(5), 25(in Chinese). 吴卓科, 李菁若, 潘岳, 等. 公路交通技术, 2019, 35(5), 25. 15 Zhang J, Chen G B, Chen H B, et al. Optical Materials, 2019, 88, 333. 16 Xu J, Tanabe S. Journal of Luminescence, 2019, 205, 581. 17 Li S, Wang W, Chen Y, et al. Catalysis Communications, 2009, 10, 1048. 18 Li H H, Yin S, Wang Y H, et al. Journal of Catalysis, 2012, 286, 273. 19 Li H H, Yin S, Sato T. Applied Catalysis B: Environmental, 2011, 106, 586. 20 Li H H, Yin S, Wang Y H, et al. Journal of Molecular Catalysis A: Chemical, 2012, 363-364, 129. 21 Kim J S, Sung H J, Kim B J. Applied Surface Science, 2015, 334, 151. 22 Chu Y C, Lin T J, Lin Y R, et al. Carbon, 2020, 169, 338. 23 Wang Y, Liu L, Wu D, et al. Chinese Journal of Catalysis, 2019, 40, 1198. 24 He L, Jia B, Che L, et al. Journal of Luminescence, 2016, 172, 317. 25 Cheng X. Preparation and photoelectrochemical properties of FeVO4 and g-C3N4 semiconductor materials. Master’s Thesis, Qufu Normal University, China, 2018 (in Chinese). 程新. FeVO4与g-C3N4半导体材料的制备及其光电化学性能研究. 硕士学位论文, 曲阜师范大学, 2018. 26 Tang B M, Yang X Y, Cao X J, et al. Materials Research Express, 2019, 6, 125509. 27 Du H, Shan W, Wang L, et al. Journal of Luminescence, 2016, 176, 272. 28 Som S, Dutta S, Kumar V, et al. Journal of Alloys and Compounds, 2015, 622, 1068.