Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100240-11    https://doi.org/10.11896/cldb.21100240
  无机非金属及其复合材料 |
基于金属氧化物敏感材料的一氧化碳传感器研究进展
黄馨月1,*, 雷小峰2, 冯文林3, 吴畏2, 孙权2
1 重庆理工大学化学化工学院,重庆 400054
2 重庆理工大学材料科学与工程学院,重庆 400054
3 重庆理工大学理学院,重庆 400054
Research Progress of Carbon Monoxide Sensor Based on Metal Oxide Sensitive Materials
HUANG Xinyue1,*, LEI Xiaofeng2, FENG Wenlin3, WU Wei2, SUN Quan2
1 College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
2 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
3 College of Science, Chongqing University of Technology, Chongqing 400054, China
下载:  全 文 ( PDF ) ( 19101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于具有高毒、无色、无味的特性,一氧化碳气体成为近年来工矿作业、日常生活中的“隐形杀手”。目前,市面上涌现出许多基于电学、电化学以及光学原理的一氧化碳传感装置。应用于一氧化碳传感平台的气敏材料十分丰富,其中金属氧化物敏感材料由于其良好的电学、光学以及传感特性应用广泛。传感器性能的改进主要依托于敏感材料的形貌修饰以及不同材料之间的掺杂与复合,以起到“1+1>2”的作用,使之具备更优异的灵敏度和选择性,更短的响应和恢复时间。本文综述了几种基于金属氧化物的一氧化碳传感器,对制备方法、改性技术和传感特性进行了概述,并提出一氧化碳传感器现在面临的挑战与未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄馨月
雷小峰
冯文林
吴畏
孙权
关键词:  金属氧化物  一氧化碳传感器  传感机理  材料改性  催化氧化    
Abstract: Carbon monoxide gas is an invisible killer in everyday life, especially in industrial and mining operations, owing to the highly toxic, colourless, and odourless nature. Recently, various types of carbon monoxide sensing devices based on electrical, electrochemical, and optical principles have emerged in the market. Among the various gas-sensitive materials used in carbon monoxide sensing platforms, metal oxides are widely used owing to their good electrical, optical, and sensing properties. The improvement in sensor performance mainly relies on morphological modifications of sensitive materials, doping, and complex formation among different materials to achieve synergism, which will contribute to better sensitivity and selectivity and shorter response and recovery time of sensors. In this study, we review several metal oxide-based carbon monoxide sensors with an overview of their preparation methods, modification techniques, and sensing characteristics. Furthermore, we discuss the current challenges and future directions of carbon monoxide sensors.
Key words:  metallic oxide    carbon monoxide sensor    sensing mechanism    material modification    catalyzed oxidation
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  O643.3  
基金资助: 国家自然科学基金青年项目(51904053);重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0539);重庆市教委科学技术研究青年项目(KJQN202101142);重庆理工大学研究生创新项目一般项目(clgycx 20202012);重庆理工大学2021年学生科研立项重点项目(KLB21027)
通讯作者:  * 黄馨月,重庆理工大学化学化工学院副教授、硕士研究生导师,2016年毕业于重庆大学化学工程与技术专业,取得博士学位。目前主要从事光纤传感、功能材料等方面的研究工作。在国内外重要刊物如Sensor and Actuators B-Chemical、Scientific Reports等发表数篇学术论文。Huangxy@cqut.edu.cn   
引用本文:    
黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
HUANG Xinyue, LEI Xiaofeng, FENG Wenlin, WU Wei, SUN Quan. Research Progress of Carbon Monoxide Sensor Based on Metal Oxide Sensitive Materials. Materials Reports, 2023, 37(15): 21100240-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100240  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100240
1 Anand J S, Schetz D, Waldman W, et al. Plos One, 2017, 12, 8.
2 Reumuth G, Alharbi Z, Houschyar K S, et al. Burns, 2019, 45, 526.
3 Ozyurt A, Karpuz D, Yucel A, et al. Cardiovascular Toxicology, 2017, 17, 326.
4 Yang X X, Ke B W, Lu W, et al. Chinese Journal of Natural Medicines, 2020, 18, 284.
5 Fitriana F, Septiani N L W, Irzaman I, et al. Materials Research Express, 2019, 6, 7.
6 Hosoya A, Tamura S, Imanaka N. Isij International, 2015, 55, 1699.
7 Hosoya A, Tamura S, Imanaka N. Isij International, 2016, 56, 1634.
8 Rodlamul P, Tamura S, Imanaka N. Journal of the Ceramic Society of Japan, 2018, 126, 750.
9 Guan Y H, Liu F M, Wang B, et al. Sensors and Actuators B-Chemical, 2017, 239, 696.
10 Anggraini S A, Fujio Y, Ikeda H, et al. Analytica Chimica Acta, 2017, 982, 176.
11 Hyodo T, Takamori M, Goto T, et al. Sensors and Actuators B-Chemical, 2019, 287, 42.
12 Zhang Y H, Cheng D L, Wu Z C, et al. Chemosensors, 2020, 8, 14.
13 Remmel K, Jiang H M, Tang X L, et al. Sensors and Actuators B-Chemical, 2011, 160, 533.
14 Yao C Y, Xiao L M, Gao S F, et al. Sensors and Actuators B-Chemical, 2020, 303, 6.
15 Zhang W J, Yang F X, Xu J C, et al. ACS Omega, 2020, 5, 20034.
16 Low S S, Tan M T T, Loh H S, et al. Analytica Chimica Acta, 2016, 903, 131.
17 Muchtar A R, Septiani N L W, Iqbal M, et al. Journal of Electronic Materials, 2018, 47, 3647.
18 Hjiri M, Bahanan F, Aida M S, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4063.
19 Ha N H, Thinh D D, Huong N T, et al. Applied Surface Science, 2018, 434, 1048.
20 Yoon H J, Jun D H, Yang J H, et al. Sensors and Actuators B-Chemical, 2011, 157, 310.
21 Utari L, Septiani N L W, Suyatman, et al. IEEE Access, 2020, 8, 49169.
22 Platonov V B, Rumyantseva M N, Frolov A S, et al. Beilstein Journal of Nanotechnology, 2019, 10, 1537.
23 Kumar R, Kumar G, Al-Dossary O, et al. Materials Express, 2015, 5, 3.
24 Er I K, Nurtayeva T, Sbeta M, et al. Journal of Materials Science-Materials in Electronics, 2019, 30, 10560.
25 Aprilia L, Nuryadi R, Hosoda M, et al. Japanese Journal of Applied Physics, 2020, 59, 9.
26 Habib I Y, Tajuddin A A, Noor H A, et al. Scientific Reports, 2019, 9, 12.
27 Fallah H, Asadishad T, Shafiei M, et al. Optics Communications, 2020, 463, 6.
28 Qin C, Wang B, Li P P, et al. Sensors and Actuators B-Chemical, 2021, 331, 11.
29 Dilova T, Atanasova G, Dikovska A O, et al. Thin Solid Films, 2020, 693, 8.
30 Tsai Y S, Tsai S C, Kuo C C, et al. Results in Physics, 2021, 24, 9.
31 Mandal B, Maiti S, Aaryashree, et al. Journal of Physical Chemistry C, 2020, 124, 7307.
32 Ozutok F, Er I K, Acar S, et al. Journal of Materials Science-Materials in Electronics, 2019, 30, 259.
33 Aaryashree A, Mandal B, Biswas A, et al. Ieee Sensors Journal, 2021, 21, 2610.
34 Wang Y, Meng X N, Cao J L. Journal of Hazardous Materials, 2020, 381, 9.
35 Wang F, Li H R, Yuan Z X, et al. RSC Advances, 2016, 6, 79343.
36 Royer S, Duprez D. Chemcatchem, 2011, 3, 24.
37 Jonca J, Ryzhikov A, Palussiere S, et al. Chemphyschem, 2017, 18, 2658.
38 Proenca M, Rodrigues M, Vaz F, et al. Ieee Sensors Letters, 2021, 5, 3.
39 Nakate U T, Patil P, Na S I, et al. Colloids and Surfaces a-Physicoche-mical and Engineering Aspects, 2021, 612, 8.
40 Hou L, Zhang C M, Li L, et al. Talanta, 2018, 188, 41.
41 Zhang D Z, Jiang C X, Liu J J, et al. Sensors and Actuators B-Chemical, 2017, 247, 875.
42 Molavi R, Sheikhi M H. Materials Science in Semiconductor Processing, 2020, 106, 9.
43 Ambardekar V, Sahoo S, Srivastava D K, et al. Sensors and Actuators B-Chemical, 2021, 331, 14.
44 Oosthuizen D N, Motaung D E, Swart H C. Applied Surface Science, 2019, 466, 545.
45 Mahajan S, Jagtap S. Applied Materials Today, 2020, 18, 30.
46 Bhardwaj N, Pandey A, Satpati B, et al. Physical Chemistry Chemical Physics, 2016, 18, 18846.
47 Yin X T, Lv P, Li J. Journal of Materials Science-Materials in Electro-nics, 2018, 29, 18935.
48 Prajesh R, Nahid M, Saini V, et al. Journal of Electronic Materials, 2021, 50, 554.
49 Rehman B, Bhalla N K, Vihari S, et al. Materials Chemistry and Physics, 2020, 244, 5.
50 Chen Y P, Qin H W, Hu J F. Applied Surface Science, 2018, 428, 207.
51 Stanoiu A, Ghica C, Somacescu S, et al. Sensors and Actuators B-Chemical, 2020, 308, 9.
52 Wang M Y, Sun B L, Jiang Z Y, et al. Journal of Nanoscience and Nanotechnology, 2018, 18, 4176.
53 Oleksenko L P, Maksymovych N P. Theoretical and Experimental Chemistry, 2019, 55, 201.
54 Tombak A, Ocak Y S, Bayansal F. Applied Surface Science, 2019, 493, 1075.
55 Zhou Q, Chen W G, Xu L N, et al. Ceramics International, 2018, 44, 4392.
56 Wang Q J, Bao L W, Cao Z Q, et al. Chinese Chemical Letters, 2020, 31, 2029.
57 Zhou Q, Xu L N, Umar A, et al. Sensors and Actuators B-Chemical, 2018, 256, 656.
58 Zuo J L, Tavakoli S, Mathavakrishnan D, et al. Chemosensors, 2020, 8, 12.
59 Debataraja A, Muchtar A R, Septiani N L W, et al. Ieee Sensors Journal, 2017, 17, 8297.
60 Jian K S, Chang C J, Wu J J, et al. Polymers, 2019, 11, 16.
61 Xue Y B, Tang Z A. Sensors and Actuators B-Chemical, 2009, 138, 108.
62 Mauraya A K, Mahana D, Pal P, et al. Journal of Alloys and Compounds, 2020, 843, 11.
63 Absalan S, Nasresfahani S, Sheikhi M H. Journal of Alloys and Compounds, 2019, 795, 79.
64 Shehzad K, Shah N A, Amin M, et al. International Journal of Distributed Sensor Networks, 2018, 14, 10.
65 Li C, Zhang D, Han S, et al. Molecular Electronics Ⅲ, 2003, 1006, 104.
66 Xia Y F, He G, Wang W H, et al. Ieee Transactions on Electron Devices, 2021, 68, 2522.
67 Rahmanian A, Rahmani A. Optik, 2018, 155, 163.
68 Xu W J, Liu T, Wang Y Q, et al. Electroanalysis, 2021, 33, 1810.
69 Domenech-Gil G, Barth S, Sama J, et al. Sensors and Actuators B-Chemical, 2017, 238, 447.
70 Luo Y B, An B X, Bai J L, et al. Journal of Colloid and Interface Science, 2021, 599, 533.
71 An D M, Liu N, Zhang H F, et al. Sensors and Actuators B-Chemical, 2021, 340, 9.
72 Pham A T, Luu O A M, Nguyen A D, et al. Materials Research Bulletin, 2021, 137, 9.
73 Naberezhnyi D, Rumyantseva M, Filatova D, et al. Nanomaterials, 2018, 8, 15.
74 Hwang J, Jung H, Shin H S, et al. Applied Sciences-Basel, 2021, 11, 17.
75 Shanmugasundaram A, Gundimeda V, Hou T F, et al. ACS Applied Materials & Interfaces, 2017, 9, 31728.
76 Bonaccorsi L, Malara A, Donato A, et al. Micromachines, 2019, 10, 11.
77 Pan F J, Lin H, Zhai H Z, et al. Sensors and Actuators B-Chemical, 2018, 261, 451.
78 Simonetti E A N, De Oliveira T C, Machado A E D, et al. Ceramics International, 2021, 47, 17844.
79 Morales J, Maldonado A, Olvera M D. Journal of Materials Science-Materials in Electronics, 2018, 29, 15808.
80 Zhang Y X, Zeng W, Ye H, et al. Applied Surface Science, 2018, 442, 507.
81 Bandi S, Hastak V, Peshwe D R, et al. Bulletin of Materials Science, 2018, 41, 5.
82 Hsu K C, Fang T H, Hsiao Y J, et al. Journal of Alloys and Compounds, 2019, 794, 576.
83 Wang Z M, Peng X Y, Huang C Y, et al. Applied Catalysis B-Environmental, 2017, 219, 379.
84 Xu J M, Cheng J P. Journal of Alloys and Compounds, 2016, 686, 753.
85 Wang H F, Kavanagh R, Guo Y L, et al. Journal of Catalysis, 2012, 296, 110.
86 Busacca C, Donato A, Lo Faro M, et al. Sensors and Actuators B-Chemical, 2020, 303, 9.
87 Zhou Q, Zeng W. Physica E-Low-Dimensional Systems & Nanostructures, 2018, 95, 121.
88 Vladimirova S, Krivetskiy V, Rumyantseva M, et al. Sensors, 2017, 17, 13.
89 Peng J, Feng W L, Yang X Z, et al. Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences, 2019, 74, 101.
90 Peng J, Liao J, Yang X Z, et al. Chinese Chemical Letters, 2020, 31, 2145.
91 Toda K, Furue R, Hayami S. Analytica Chimica Acta, 2015, 878, 43.
92 Feng W L, Deng D S, Yang X Z, et al. Ieee Sensors Journal, 2018, 18, 8762.
93 Chen K W, Tsai J H, Chen C H. Materials Letters, 2019, 255, 4.
94 Molavi R, Sheikhi M H. Materials Letters, 2018, 233, 74.
95 Sun L, Luan W L, Wang T C, et al. Nanotechnology, 2017, 28, 8.
96 Mokrushin A S, Fisenko N A, Gorobtsov P Y, et al. Talanta, 2021, 221, 10.
97 Chen K W, Liu J P, Hsu Y S, et al. New Journal of Chemistry, 2018, 42, 16478.
98 Hsu K C, Fang T H, Tang I T, et al. Journal of Alloys and Compounds, 2020, 822, 9.
99 Kim J H, Kim J Y, Mirzaei A, et al. Sensors and Actuators B-Chemical, 2021, 332, 12.
100 Hyun S K, Nam B, Ko T K, et al. Physica Status Solidi a-Applications and Materials Science, 2020, 217, 8.
101 Nam B, Ko T K, Hyun S K, et al. Journal of Nanoscience and Nanotechnology, 2020, 20, 4344.
102 Zhang D Z, Wu J F, Cao Y H. Journal of Alloys and Compounds, 2019, 777, 443.
103 Javanmardi S, Nasresfahani S, Sheikhi M H. Materials Research Bulletin, 2019, 118, 9.
104 Kim J H, Mirzaei A, Kim H W, et al. Sensors and Actuators B-Chemical, 2018, 267, 597.
105 Ghosh A, Schneller T, Waser R, et al. Sensors and Actuators B-Chemical, 2017, 253, 685.
106 Santhaveesuk T, Shimanoe K, Suematsu K, et al. Physica Status Solidi a-Applications and Materials Science, 2018, 215, 8.
107 Debataraja A, Septiani N L W, Yuliarto B, et al. Ionics, 2019, 25, 4459.
108 Sun Y J, Zhao Z T, Suematsu K, et al. ACS Sensors, 2020, 5, 1040.
109 Li F F, Shi C M, Cui G L, et al. Computational and Theoretical Che-mistry, 2018, 1123, 41.
110 Huang Y W, Chen W M, Zhang S C, et al. Applied Surface Science, 2015, 351, 1025.
111 Han Q W, Zhang D Y, Guo J L, et al. Nanomaterials, 2019, 9, 14.
112 Song H J, Yan S W, Yao Y L, et al. Chemical Engineering Journal, 2019, 370, 1331.
113 Ma Y X, Ma Y Y, Long G R, et al. Applied Surface Science Advances, 2020, 2, 8.
114 Cui X N, Liu J, Yan X C, et al. Applied Surface Science, 2021, 570, 8.
115 Bhowmick T, Nag S, Majumder S B. Journal of Alloys and Compounds, 2021, 884, 12.
116 Shimizu Y, Yamamoto S, Takase S. Sensors and Actuators B-Chemical, 2017, 249, 667.
117 Kim H J, Lee J H. Sensors and Actuators B-Chemical, 2014, 192, 607.
118 Kim J H, Mirzaei A, Kim H W, et al. ACS Applied Materials & Interfaces, 2019, 11, 24172.
119 Mahendraprabhu K, Sharma A S, Elumalai P. Sensors and Actuators B-Chemical, 2019, 283, 842.
120 Eslamian M, Salehi A, Nadimi E. Surface Science, 2021, 708, 10.
121 Hubner M, Simion C E, Tomescu-Stanoiu A, et al. Sensors and Actuators B-Chemical, 2011, 153, 347.
122 Prajapati C S, Bhat N. Crystal Research and Technology, 2019, 54, 10.
123 Mauraya A K, Singh P, Muthiah S, et al. Ceramics International, 2021, 47, 13015.
124 Liu X C, Hu M, Wang Y F, et al. Journal of Alloys and Compounds, 2016, 685, 364.
[1] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[2] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[3] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[4] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[5] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[6] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[7] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[8] 王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
[9] 郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 20090180-10.
[10] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[11] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[12] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[13] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[14] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[15] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed