Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21100141-7    https://doi.org/10.11896/cldb.21100141
  高分子与聚合物基复合材料 |
静电纺丝法制备定向导液复合纤维材料的研究进展
周鉴澄1, 林骏1, 赵小敏2, 陈丹青2,*, 陈国华2
1 华侨大学化工学院,福建 厦门 361021
2 华侨大学材料科学与工程学院,福建 厦门 361021
Research Progress on Directional Moisture Penetration Composites Prepared via Electrospinning
ZHOU Jiancheng1, LIN Jun1, ZHAO Xiaomin2, CHEN Danqing2,*, CHEN Guohua2
1 College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
2 College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
下载:  全 文 ( PDF ) ( 8656KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 如何实现液体的定向传导和快速蒸发在功能性非织造材料领域颇具研究价值。人们对智能水分管理不断增长的需求促使相关学者探索如何实现液体的定向移动,进而实现对人体微气候的智能调节以保证使用者的舒适性。研究人员过去通常采用后整理的方法对材料进行亲水或疏水化改性,使材料获得一侧亲水而另一侧疏水的双侧结构来实现定向导液功能,但这类方法存在工艺流程复杂、对环境不友好和产品性能不稳定等问题。静电纺丝技术是制备连续纳米纤维的有效方法,其产品具有质轻、形貌均一、比表面积大且孔隙率高等优点。该技术可以有效利用疏水性和亲水性材料之间的湿润性差异来构建复合材料的湿润性梯度,使液体可以从疏水侧渗透但在亲水侧受阻。因此使用静电纺丝法制备定向导液复合纤维材料成为颇具价值的研究方向。基于此,本文分析了定向导液的作用机理,概括了定向导液复合纤维材料的制备方法,总结了定向导液复合纤维材料的应用领域并对其前景做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周鉴澄
林骏
赵小敏
陈丹青
陈国华
关键词:  静电纺丝  定向导液  湿润性梯度  多层结构    
Abstract: How to accomplish directional transportation and rapid evaporation of moisture has great research value in the fields of functional nonwoven materials. The growing demand for intelligent moisture management has motivated researchers to investigate how to achieve directional moisture transport, thereby realizing intelligent adjustment of the human body's microclimate to ensure user comfort. In the past, finishing method was taken to change hydrophobic or hydrophilic properties of the materials, so that the materials would get a bilateral structure which one side would be hydrophilic and the other side would be hydrophobic, however, this type of method has problems of complex process, unfriendly to the environment and unstable performance. The nanofiber materials prepared by electrospinning have the advantages of light weight, uniform morphology, large specific surface area and high porosity. The unique feature of this method is that the difference in wettability between the hydrophobic and hydrophilic materials can be used to construct the wettability gradient so that the moisture can penetrate from the hydrophobic side but is blocked on the hydrophilic side. Therefore, using electrospinning to prepare directional moisture penetration composites has become a valuable research field. In this review, the mechanism of realizing the function of directional moisture transport is analyzed, the preparation methods and the application fields of directional moisture penetration composites are summarized. Furthermore, prospects for potential applications of directional moisture transport composites are presented.
Key words:  electrospinning    directional moisture transport    wettability gradient    multilayered architecture
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TQ340.64  
基金资助: 福建省科技计划项目(2023H0010)
通讯作者:  *陈丹青,华侨大学材料科学与工程学院副教授、硕士研究生导师。1997年6月湘潭师范学院化学系化学教育专业本科毕业,2000年6月中山大学高分子研究所高分子化学与物理专业硕士毕业,2013年6月华侨大学材料科学与工程学院材料学专业博士毕业。目前主要从事功能高分子材料、复合材料等方面的研究工作。已发表论文30余篇,包括Composites: Part A、Journal of Materials Science、Journal of Reinforced Plastics and Composites、RSC Advances、《材料导报》等。chendan@hqu.edu.cn   
作者简介:  周鉴澄,2020年6月毕业于集美大学,获得工学学士学位。现为华侨大学化工学院硕士研究生,在陈丹青副教授的指导下进行研究。目前主要从事静电纺丝技术制备功能性复合材料的研究。
引用本文:    
周鉴澄, 林骏, 赵小敏, 陈丹青, 陈国华. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 21100141-7.
ZHOU Jiancheng, LIN Jun, ZHAO Xiaomin, CHEN Danqing, CHEN Guohua. Research Progress on Directional Moisture Penetration Composites Prepared via Electrospinning. Materials Reports, 2023, 37(16): 21100141-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100141  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21100141
1 Greenspan H P. Journal of Fluid Mechanics, 1978, 84(1), 125.
2 Zhang X, Shi F, Niu J, et al. Journal of Materials Chemistry, 2008, 18(6), 621.
3 Wang H X, Ding J, Dai L M, et al. Journal of Materials Chemistry, 2010, 20(37), 7938.
4 Wang H X, Wang X G, Lin T. Journal of Nanoscience and Nanotechnology, 2013, 13(2), 839.
5 Zhou H, Wang H X, Niu H T, et al. Advanced Materials Interfaces, 2016, 3(17), 1600283.
6 Zaman M, Liu H B, Xiao H N, et al. Carbohydrate Polymers, 2013, 91(2), 560.
7 Salas C, Genzer J, Lucia L A, et al. Applied Materials & Interfaces, 2013, 5(14), 6541.
8 Su Q, Ren Y L, Xing P Y. Technical Textiles, 2013,31(5), 1 (in Chinese).
苏倩, 任元林, 信鹏月.产业用纺织品, 2013, 31(5), 1.
9 Miao D Y, Huang Z, Wang X F, et al. Small, 2018, 14(32), 1801527.
10 Xue J J, Wu T, Dai Y Q, et al. Chemical Reviews, 2019, 119(8), 5298.
11 Haider A, Haider S, Kang I K. Arabian Journal of Chemistry, 2015, 11(8), 1165.
12 Hui W, Pan W, Lin D D, et al. Journal of Advanced Ceramics, 2012, 1(1), 2.
13 Nogi M, Iwamoto S, Nakagaito A N, et al. Advanced Materials, 2009, 21(16), 1595.
14 Hsieh M C, Koga H, Suganuma K, et al. Scientific Reports, 2017, 7, 41590.
15 Liu W Y, Lipner J, Moran C H, et al. Advanced Materials, 2015, 27(16), 2583.
16 Dong G P, Xiao X D, Zhang L L, et al. Journal of Materials Chemistry, 2011, 21(7), 2194.
17 Cao M Y, Xiao J S, Yu C M, et al. Small, 2015, 11(34), 4379.
18 Wang X F, Yu J Y, Sun G, et al. Materials Today, 2016, 19(7), 403.
19 Babar A A, Wang X F, Iqbal N, et al. Advanced Materials Interfaces, 2017, 4(15), 1700062.
20 Hou L L, Wang N, Wu J, et al. Advanced Functional Materials, 2018, 28(49), 1801114.
21 Dong Y L, Kong J H, Mu C Z, et al. Materials & Design, 2015, 88, 82.
22 Li J L, Pan K, Tian H F, et al. Macromolecular Materials and Enginee-ring, 2020, 305(8), 2000285.
23 Kishan A P, Nezarati R M, Radzicki C M, et al. Journal of Materials Chemistry B Materials for Biology & Medicine, 2015, 3(40), 7930.
24 Ju J, Bai H, Zheng Y M, et al. Nature Communications, 2012, 3, 1247.
25 Zheng Y M, Bai H, Huang Z B, et al. Nature, 2010, 463(7281), 640.
26 Zhou Z C, Zhou H S, Zhang H, et al. Progress Engineering Plastics Application, 2020, 48(11), 145 (in Chinese).
周忠成, 周衡书, 张恒, 等.工程塑料应用, 2020, 48(11), 145.
27 Wang X F, Huang Z, Miao D Y, et al. ACS Nano, 2018, 13(2), 1060.
28 Bai H, Tian X L, Zheng Y M, et al. Advanced Materials, 2010, 22(48), 5521.
29 Wang Q, Feng X W. Journal of Donghua University (Natural Science), 2001, 27(3), 54 (in Chinese).
王其, 冯勋伟.东华大学学报(自然科学版), 2001,27(3), 54.
30 Li J, Guo Z G. Nanoscale, 2018, 10(29), 13814.
31 Lv C J, Chen C, Chuang Y C, et al. Physical Review Letters, 2014, 113(2), 026101.
32 Dai B, Li K, Shi L X, et al. Advanced Materials, 2019, 31(41), 1904113.
33 Ren Q, Wang H, Li J Q, et al. Technical Textiles, 2012, 30(11), 21 (in Chinese).
任祺, 王洪, 李建强, 等.产业用纺织品, 2012, 30(11), 21.
34 Ma R Y, Qu F Y, Pang S S, et al. Technical Textiles, 2015, 33(1), 38 (in Chinese).
马若阳, 曲方圆, 庞沙沙, 等.产业用纺织品, 2015, 33(1), 38.
35 Zhou X J, Li J Q. Journal of Wuhan Textile University, 2011, 24(3), 24 (in Chinese).
周晓洁, 李建强.武汉纺织大学学报, 2011, 24(3), 24.
36 Qi G R, Ke Q F, Li Z A, et al. Journal of Textile Research, 2019, 40(7), 119 (in Chinese).
齐国瑞, 柯勤飞, 李祖安, 等.纺织学报, 2019, 40(7), 119.
37 Wang J, Ying B P, Qi X Y. Journal of Donghua University (Natural Science), 2014, 40(4), 476 (in Chinese).
王洁, 殷保璞, 靳向煜.东华大学学报(自然科学版), 2014, 40(4), 476.
38 Wu J, Wang N, Wang L, et al. Soft Matter, 2012, 8(22), 5996.
39 Yan W, Miao D, Babar A A, et al. Journal of Colloid and Interface Science, 2020, 565, 426.
40 Dong Y, Kong J, Phua S L, et al. ACS Applied Materials & Interfaces, 2014, 6(16), 14087.
41 Wu Q X, Hou C Y, Li Y G, et al. Journal of Textile Research, 2021, 42(9), 24 (in Chinese).
吴钦鑫, 侯成义, 李耀刚,等.纺织学报, 2021, 42(9), 24.
42 Yan Y H. Study on the air and humidity permeability and gas sensing function of medical protective clothing. Master's Thesis, Donghua University, China, 2021 (in Chinese).
颜宇豪. 医用防护服的透气透湿与气体传感功能研究. 硕士学位论文, 东华大学, 2021.
43 Li S, Xu Y, Wang A M, et al. Progress Engineering Plastics Application, 2013(12), 8 (in Chinese).
李莘, 徐阳, 王爱民,等.工程塑料应用, 2013(12), 8.
44 Li M, Feng Q, Wu D S, et al. New Chemical Materials, 2020, 48 (8), 143 (in Chinese).
李曼, 凤权, 武丁胜, 等. 化工新型材料, 2020, 48(8), 143.
45 Wang Z, Zhang X F, Ma X Y D, et al. Separation and Purification Technology, 2020, 235, 116183.
46 Zhang S C, Liu H, Tang N, et al. ACS Nano, 2019, 13(11), 13501.
47 Xu X L, Zhou M H. New Chemical Materials, 2010, 38(2), 23 (in Chinese).
徐雄立, 周美华.化工新型材料, 2010, 38(2), 23.
48 Jiang P L, Huang C, Li J,et al. Journal of Donghua University (Natural Science), 2019, 45(3), 339 (in Chinese).
蒋佩林, 黄晨, 李晶, 等. 东华大学学报(自然科学版), 2019, 45(3), 339.
49 Su C I, Fang J X, Chen X H, et al. Textile Research Journal, 2007, 77(10), 764.
50 Zhang K, Li Z, Kang W, et al. Carbohydrate Polymers, 2018, 183, 62.
51 Liang Y C, Huang G, Zeng X R, et al. Materials Letters, 2020, 268, 127583.
52 Ahmed B A, Miao D, Nadir A, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22866.
[1] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[2] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[3] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[4] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[5] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[6] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[7] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[8] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[9] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[10] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[11] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[12] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[13] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[14] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[15] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed