Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21070224-16    https://doi.org/10.11896/cldb.21070224
  高分子与聚合物基复合材料 |
植物纤维素基气凝胶吸油材料的制备及应用
范廷玉1, 赵杰1,2, 彭丹2,*, 郭学涛3
1 安徽理工大学地球与环境学院,安徽 淮南 232001
2 深圳信息职业技术学院交通与环境学院,广东 深圳 518172
3 西北农林科技大学资源与环境学院,陕西 杨凌 712100
Preparation and Application of Plant Cellulose-based Aerogel for Oil Adsorption
FAN Tingyu1, ZHAO Jie1,2, PENG Dan2,*, GUO Xuetao3
1 College of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China
3 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
下载:  全 文 ( PDF ) ( 18697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着世界经济的迅速发展,石油作为一种不可再生资源,为人类生存和社会发展提供能源、原料的同时,也产生大量含油废水,危害生态环境。为了解决石油带来的水污染问题,主要的油水分离技术有物理法、化学法和生物法。吸油技术作为一种操作简便、经济、高效的物理方法,既可实现油水分离,又可回收油资源。其中,开发低成本、可循环使用、环境友好的吸油材料日益受到关注。
目前,根据材料形态不同,油水分离材料分为粉末/颗粒状一维材料、膜状二维材料和气凝胶三维材料。气凝胶因孔隙率高、比表面积大、弹性好、方便操作等优点,被逐渐应用于油水分离领域,通过简单的物理挤压既可回收吸收的油,又可使材料循环使用,显示出较高的经济效益和环境效益。与二氧化硅、石墨烯等其他气凝胶材料相比,植物纤维素基气凝胶因来源广、可再生、密度低、可生物降解等优点,成为现如今吸油材料研究领域的热点。此外,由植物纤维素和氧化石墨烯、海藻酸钠、壳聚糖等材料制备的复合气凝胶因具有高强度、阻燃性、抗压性等性质,可应用于各种严苛环境。
本文综述了近年来植物纤维素基气凝胶在油水分离方面的研究进展,其中重点总结了材料的干燥方法(超临界干燥、常压干燥和冷冻干燥)、冷冻方式(常规冷冻、单向冷冻和双向冷冻)、疏水改性及吸油特性方面的内容。最后对植物纤维素基气凝胶吸油材料存在的问题进行了讨论,并对其未来的发展做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范廷玉
赵杰
彭丹
郭学涛
关键词:  植物纤维素  气凝胶  制备  疏水化  吸油    
Abstract: In recent years, the rapid development of the world economy has resulted in massive consumption of oil, which is considered as a non-renewable resource and has been supplied as an important energy and raw materials for human survival and social evolution. However, the up rush of oil consumption has produced a large amount of oil-containing waste water, which poses great harm to the environment. To date, the main oil-water separation technologies for oil pollution remediation include physical, chemical, and biological methods. Among the various technologies, sorption with oil-absorbing material is regarded as a cost-effective and efficient method, which is capable of effectively separating and recovering oil as a resource from oily water. Therefore, the development of low-cost, recyclable and environmentally friendly adsorbents as oil-water separation materials are gaining more attention.
In terms of the material forms, the oil-waterseparation materials can be classified into three categories, namely, powder/granular one-dimensional materials, membrane two-dimensional materials, and three-dimensional aerogels. Due to the advantages of high porosity, large specific surface area, good elasticity, and convenient operation, aerogels have gradually been applied in the field of oil/water separation. Oil can be recovered easily through simple physical squeezing, while the production of oil adsorbents from fibrous waste can provide additional economic and environmental benefits. Compared with the silica-, and graphene-based aerogels, cellulose-based ones have emerged as one of the hottest research topics, owing to their advantages of ubiquity, renewability, cost-effectiveness, low density, and biodegradability. In addition, the hybrid aerogels prepared from plant cellulose, graphene oxides, sodium alginate, chitosan and other materials can be used in a variety of harsh environments due to their high-strength, flame retardant, compressive properties.
In this review, the state-of-the-art research progress in developing cellulose-based aerogels for highly efficient oil/water separationis summarized. The drying methods (supercritical drying, atmospheric drying and freeze drying), freezing methods (conventional freezing, unidirectional freezing and bidirectional freezing), hydrophobic modification and oil absorption properties of the materials are summarized emphatically. Finally, the existing problems of plant cellulose-based aerogels for oil sorption are discussed, and the future developments are prospected.
Key words:  plant cellulose    aerogels    preparation    hydrophobization    oil sorption
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TB33  
基金资助: 国家自然科学基金( 42007323) ; 广东省自然科学基金(2018A030313363); 深圳市科技计划(20200830203418001); 安徽省重点研究与开发计划(202104a06020027)
通讯作者:  *彭丹,深圳信息职业技术学院交通与环境学院副教授、硕士研究生导师。2005年湘潭大学环境工程专业本科毕业,2008年湖南大学环境科学与工程专业硕士毕业,2013年华南理工大学与美国宾夕法尼亚州立大学环境科学专业博士毕业。目前主要从事溢油修复材料、生物质吸附材料、生物酶催化等方面的研究工作。发表论文50余篇,包括Bioresource Technology、Journal of Hazardous Materials、Journal of Materials Chemistry A、Chemospher等。pengdan987@hotmail.com   
作者简介:  范廷玉,安徽理工大学地球与环境学院教授、硕士研究生导师。2002年吉林大学环境工程专业本科毕业后在安徽理工大学工作至今,2007年吉林大学环境工程专业硕士毕业,2013年安徽理工大学环境工程专业博士毕业。目前主要从事矿山生态环境保护与废物资源化方面的研究工作。发表SCI、EI等检索论文30余篇,主持参与国家级与省部级科研项目10余项。
引用本文:    
范廷玉, 赵杰, 彭丹, 郭学涛. 植物纤维素基气凝胶吸油材料的制备及应用[J]. 材料导报, 2023, 37(16): 21070224-16.
FAN Tingyu, ZHAO Jie, PENG Dan, GUO Xuetao. Preparation and Application of Plant Cellulose-based Aerogel for Oil Adsorption. Materials Reports, 2023, 37(16): 21070224-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070224  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21070224
1 Wan W, Lin Y, Prakash A, et al. Journal of Materials Chemistry A, 2016, 4(48), 18687.
2 Beyer J, Trannum H C, Bakke T, et al. Marine Pollution Bulletin, 2016, 110(1), 28.
3 Cheng Z,Bai X,Wang X D, et al. Oil-Gas Field Surface Engineering,2014, 33(7), 25 (in Chinese).
程壮, 白翔, 王晓东, 等. 油气田地面工程,2014, 33(7), 25.
4 Liu W, Cui S, Li J P, et al. Materials Reports, 2020, 34(9), 9019 (in Chinese).
刘伟, 崔升, 李建平,等. 材料导报, 2020, 34(9), 9019.
5 Yang W J, Anthony C, Yin Y, et al. Cellulose, 2019, 26(11), 6449.
6 Korhonen J T, Kettunen M, Ras R H, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813.
7 Saleem J, Adil Riaz M, Gordon M. Journal of Hazardous Materials, 2018, 341, 424.
8 Laitinen O, Suopajärvi T, Österberg M, et al. ACS Applied Materials & Interfaces, 2017, 9(29), 25029.
9 He J X, Zhang Z, Han J X, et al. New Chemical Materials 2020, 48(6), 29 (in Chinese).
何静娴, 张政, 韩景新, 等. 化工新型材料, 2020, 48(6), 29.
10 He J, Zhao H, Li X, et al. Journal of Hazardous Materials, 2018, 346, 199.
11 Yang W, Wang N N, Ping P, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 40032.
12 Yang W, Yuen A C Y, Ping P, et al. Composites Part A: Applied Science and Manufacturing, 2019, 119, 196.
13 Kistler S S. The Journal of Physical Chemistry, 1932, 36(1), 52.
14 Olalekan A P, Dada A O, Adesina O A. Journal of Encapsulation and Adsorption Sciences, 2014, 04(4), 122.
15 Gurav J L, Jung I K, Park H H, et al. Journal of Nanomaterials, 2010, 409310, 1.
16 Tan C, Fung B M, Newman J K, et al. Advanced Materials, 2010, 13(9), 644.
17 Sun Q, Zheng H, Li J, et al. Carbohydrate Polymers, 2016, 136(20), 95.
18 Zhang S, Feng J, Feng J, et al. Chemical Engineering Journal, 2017, 309, 700.
19 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26(11), 6449.
20 Lee S, Jeong M J, Kang K Y. Journal of the Korean Physical Society, 2015, 67(4), 738.
21 Jiang F, Hsieh Y L. ACS Applied Materials & Interfaces, 2017, 9(3), 2825.
22 Phanthong P, Reubroycharoen P, Kongparakul S, et al. Carbohydrate Polymers, 2018, 190, 184.
23 Halim A, Xu Y, Lin K H, et al. Separation and Purification Technology, 2019, 224, 322.
24 Yu H, Tong Z, Qiao Y, et al. Journal of Solid State Chemistry, 2020, 291, 121624.
25 Araby S, Qiu A, Wang R, et al. Journal of Materials Science, 2016, 51(20), 9157.
26 Bisson A, Rigacci A, Lecomte D, et al. Drying Technology, 2003, 4(4), 593.
27 Sescousse R, Smacchia A, Budtova T. Cellulose, 2010, 17(6), 1137.
28 Innerlohinger J, Weber H K, Kraft G. Macromolecular Symposia, 2006, 244(1), 126.
29 Karadagli I, Schulz B, Schestakow M, et al. The Journal of Supercritical Fluids, 2015, 106, 105.
30 Shi J, Lu L, Guo W, et al. Plastics, Rubber and Composites, 2014, 44(1), 26.
31 Sun Q F, Lu Y, Wan C C, et al. Frontiers of Agricultural Science and Engineering, 2014, 1(1), 46.
32 Wu M B, Huang S, Liu C, et al. Journal of Materials Chemistry A, 2020, 8(22), 11354.
33 Cai J, Liu S, Feng J, et al. Angewandte Chemie International Edition in English, 2012, 51(9), 2076.
34 Dilamian M, Noroozi B. Carbohydrate Polymers, 2021, 251, 117016.
35 Shamskar K R, Heidari H, Rashidi A. Industrial Crops and Products, 2016, 93(25), 203.
36 Aalbers G J W, Boott C E, D'Acierno F, et al. Biomacromolecules, 2019, 20(7), 2779.
37 Tang J, Song Y, Zhao F, et al. Carbohydrate Polymers, 2018, 208, 404.
38 Fu S Y. China Pulp & Paper, 2019, 38(6), 54(in Chinese).
付时雨.中国造纸, 2019, 38(6), 54.
39 Katz J S, Burdick J A. Macromolecular Bioscience, 2010, 10(4), 339.
40 Li H, Wang Z, Liu X, et al. Chemical Physics Letters, 2020, 755, 137805.
41 Liao Q, Su X, Zhu W, et al. RSC Advances, 2016, 6(68), 63773.
42 Thomas H, Andreas K. Polímeros, 2005, 15(2), 84.
43 Ass B A, Ciacco G T, Frollini E. Carbohydrate Polymers, 2006, 63(1), 19.
44 Zaman A, Huang F, Jiang M, et al. Energy and Built Environment, 2020, 1(1), 60.
45 Guillou J, Lavadiya D N, Munro T, et al. Applied Thermal Engineering, 2018, 128, 1372.
46 Olsson C, Westm G. Direct Dissolution of Cellulose: Background, Means and Applications, Intech, United States, 2013, pp.143.
47 Zhang J, Zhang X, Luo N. ACS Sustainable Chemistry & Engineering, 2016, 4(8), 4417.
48 Yan C, Li H, Yi Z, et al. Journal of Applied Polymer Science, 2010, 116(1), 547.
49 Schittenhelm N, Kulicke W M. Macromolecular Chemistry & Physics, 2000, 201(15), 1976.
50 Chen Y, Wang Z X, Li Q Z, et al. Chemistry and Industry of Forest Pro-ducts, 2019, 39(4), 49(in Chinese).
陈妍, 王梓鑫, 李奇臻, 等. 林产化学与工业, 2019, 39(4), 49.
51 Paulauskiene T, Uebe J, Karasu A U, et al. Water, Air, & Soil Pollution, 2020, 231(8), 424.
52 Liu H, Geng B, Chen Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 5(1), 49.
53 Siró I, Plackett D. Cellulose, 2010, 17(3), 459.
54 Asim N, Badiei M, AlghoulM A, et al. Industrial & Engineering Chemistry Research, 2019, 58(38), 17621.
55 Xiao S, Gao R, Lu Y, et al. Carbohydrate Polymers, 2015, 119, 202.
56 Zhang Y, Yin M, Lin X, et al. Chemical Engineering Journal, 2019, 371, 306.
57 Wang X, Zhang Y, JiangH, et al. Materials Research Express, 2017, 4(6), 065006.
58 Wang K, Liu X, Tan Y, et al. Chemical Engineering Journal, 2019, 371, 769.
59 Yang R, Cao Q, Liang Y, et al. Chemical Engineering Journal, 2020, 401, 126150.
60 Zhu Z, Fu S, Lucia LA. ACS Sustainable Chemistry & Engineering, 2019, 7(19), 16428.
61 Zhou L, Zhai S, Chen Y, et al. Polymers (Basel), 2019, 11(4), 712.
62 Wan C, Li J. Carbohydrate Polymers, 2016, 150, 172.
63 Huang W, Zhang L, Lai X, et al. Chemical Engineering Journal, 2020, 386, 123994.
64 Yang J, Xia Y, Xu P, et al. Cellulose, 2018, 25(6), 3533.
65 Zhang H, Wang J, Xu G, et al. Journal of Hazardous Materials, 2020, 406, 124758.
66 Li Z, Shao L, Hu W, et al. Carbohydrate Polymers, 2018, 191, 183.
67 El-Naggar M E, Othman S I, Allam A A, et al. International Journal of Biological Macromolecules, 2020, 145, 1115.
68 Cheng Q, Huang C, Tomsia A P. Advanced Materials, 2017, 29(45), 1703155.
69 Grishkewich N, Liu L, Wang C, et al. Chemical Engineering Journal, 2019, 366, 531.
70 Wang X, Zhang Y, Jiang H, et al. Materials Letters, 2016, 183, 179.
71 Darpentigny C, Nonglaton G, Bras J, et al. Carbohydrate Polymers, 2020, 229, 115560.
72 Lee S, Kang K Y, Jeong M J, et al. Journal Korean Physical Society, 2017, 71(8), 483.
73 Ras R, Ikkala O, Korhonen J T, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813.
74 Cervin N T, Aulin C, Larsson P T, et al. Cellulose, 2012, 19(2), 401.
75 Zheng, Q F, Cai z y, Gong S Q. Journal of Materials Chemistry A, 2014, 2(9), 3110.
76 Plappert S F, Quraishi S, Nedelec J M, et al. Chemistry of Materials, 2018, 30(7), 2322.
77 Ferreira E S, Rezende C A, Cranston E D. Green Chemistry, 2021, 23(10), 3542.
78 Pierre A C, Pajonk G. Chemical Reviews, 2002, 34(4), 4243.
79 Gao H, Bo L, Liu P, et al. Solar Energy Materials and Solar Cells, 2019, 201, 110122.
80 García-González C, Camino-Rey M C, Alnaief M, et al. The Journal of Supercritical Fluids, 2012, 66, 297.
81 Liebner F, Potthast A, Rosenau T, et al. Holzforschung, 2008, 62(2), 129.
82 Darpentigny C, Nonglaton G, Bras J, et al. Carbohydrate Polymers, 2020, 229, 115560.
83 Matsuyama K, Morotomi K, Inoue S, et al. The Journal of Supercritical Fluids, 2019, 143, 1.
84 Shimizu T, Kanamori K, Maeno A, et al. Chemistry of Materials, 2016, 28(19), 6860.
85 Aravind P R, Shajesh P, Soraru G D, et al. Journal of Sol-Gel Science and Technology, 2010, 54(1), 105.
86 Venkateswara R A, Nilsen E, Einarsrud M A. Journal of Non-Crystalline Solids, 2001, 296(3), 165.
87 Josset S, Hansen L, Orsolini P, et al. Cellulose, 2017, 24(9), 3825.
88 Li Y, Tanna V A, Zhou Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(8), 6387.
89 Li Y, Grishkewich N, Liu L, et al. Chemical Engineering Journal, 2019, 366, 531.
90 Wu Z Y, Li C, Liang H W, et al. Angewandte Chemie International Edition, 2013, 52(10), 2925.
91 Jiang F, Liu H, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 10(1), 1104.
92 Zhang H, Lyu S, Zhou X, et al. Journal of Colloid and Interface Science, 2019, 536, 245.
93 Cheng Q,Huang C, Tomsia A P. Advanced Materials, 2017, 29(45), 1703155.
94 Shao G, Hanaor D, Shen X, et al. Advanced Materials, 2020, 32(17), 1907176.
95 Wu J X, Dong Y, Xia J Y, et al. Chemistry and Industry of Forest Products, 2020, 40(3), 52(in Chinese).
伍锦秀, 董勇, 夏剑雨, 等. 林产化学与工业, 2020, 40(3), 52.
96 Oetjen G W. Freeze-drying, Second Edition, Wiley-VCH, Germany 2007,pp. 1.
97 Sehaqui H, Salajková M, Zhou Q, et al. Soft Matter, 2010, 6(8), 1824.
98 Chen W, Yu H, Li Q, et al. Soft Matter, 2011, 7(21), 10360.
99 Kobayashi Y, Saito T, Isogai A. Angewandte Chemie International Edition in English, 2014, 53(39), 10394.
100 Martoïa F, Cochereau T, Dumont P J J, et al. Materials & Design, 2016, 104, 376.
101 Li W L, Lu K, Walz J Y. International Materials Reviews, 2013, 57(1), 37.
102 Gao W, Wang M, Bai H. Journal of the Mechanical Behavior of Biome-dical Materials, 2020, 109, 103820.
103 Geng H. International Journal of Biological Macromolecules, 2018, 118, 921.
104 Nemoto J, Saito T, Isogai A. ACS Applied Materials & Interfaces, 2015, 7(35), 19809.
105 Kasraian K, DeLuca P P. Pharmaceutical Research, 1995, 12(4), 484.
106 Yu Z, Dai T, Yuan S, et al. ACS Applied Materials & Interfaces, 2020, 12(27), 30990.
107 Zhang X, Liu M, Wang H, et al. Carbohydrate Polymers, 2019, 208, 232.
108 Mi H Y, Jing X, Politowicz A L, et al. Carbon, 2018, 132, 199.
109 Yang M, Zhao N, Cui Y, et al. ACS Nano, 2017, 11(7), 6817.
110 Jiménez-Saelices C, Seantier B, Cathala B, et al. Carbohydrate Polymers, 2017, 157, 105.
111 Nguyen D D, Vu C M, Vu H T, et al. Materials (Basel), 2019, 12(9), 1407.
112 Niu F, Wu N, Yu J, et al. Carbohydrate Polymers, 2020, 242, 116422.
113 Chen Y, Fan D, Lyu S, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(1), 1381.
114 Jaafar Z, Quelennec B, Moreau C, et al. Carbohydrate Polymers, 2020, 247, 116642.
115 Chen Y, Yang S, Fan D, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 12878.
116 Guo Z G, Liu W M. Progress in Chemistry, 2006, 18(6), 721(in Chinese).
郭志光, 刘维民. 化学进展, 2006, 18(6), 721.
117 Rafieian F, Hosseini M, Jonoobi M, et al. Cellulose, 2018, 25(8), 4695.
118 Zhao L, Li L, Wang Y, et al. Applied Physics A, 2017, 124(1), 9.
119 Li Y, Zhu L, Grishkewich N, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9367.
120 Lin R, Li A, Zheng T, et al. RSC Advances, 2015, 5(100), 82027.
121 Jiang F, Hsieh Y L. ACS Omega, 2018, 3(3), 3530.
122 Zhang X, Wang H, Cai Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 7(1), 332.
123 Wu Z, Li Y, Zhang L, et al. Rsc Advances, 2017, 7(33), 20147.
124 Morais Zanata D, Battirola L C, Gonçalves M. Cellulose, 2018, 25(12), 7225.
125 Yu L, Zhang Z, Tang H, et al. Cellulose, 2019, 26(6), 4021.
126 Fatemeh R, Maleksadat H, Mehdi J, et al. Cellulose, 2018, 25, 4695.
127 Zheng Q, Cai Z, Gong S. Journal of Materials Chemistry A, 2014, 2(9), 3110.
128 Zhao L, Lian L, Wang Y, et al. Applied Physics A, 2018, 124(1), 9.
129 Xu Z, Jiang X, Zhou H, et al. Cellulose, 2017, 25(2), 1217.
130 Xu T, Wang Z, Ding Y, et al. Carbohydrate Polymers, 2018, 179, 164.
131 Zhou L, Zhai S, Chen Y, et al. Polymers (Basel), 2019, 11(4), 712.
132 He Z, Zhang X, Batchelor W. RSC Advances, 2016, 6(26), 21435.
133 Durgadevi N, Swarnalatha V. RSC Advances, 2017, 7(55), 34866.
134 Mulyadi A, Zhang Z, Deng Y. ACS Applied Materials & Interfaces, 2016, 8(4), 2732.
135 Sun F, Liu W, Dong Z, et al. Chemical Engineering Journal, 2017, 330(12), 774.
136 Lazzari L K, Zampieri V B, Zanini M, et al. Cellulose, 2017, 24(8), 3421.
137 Granström M, née Pääkkö M K, Jin H, et al. Polymer Chemistry, 2011, 2(8), 1789.
138 Ressouche E, Molina-Boisseau S, Mazeau K, et al. Cellulose, 2020, 27(14), 7979.
139 Shang Q, Liu C, Hu Y, et al. Carbohydrate Polymers, 2018, 191, 168.
140 Hair L M, Pekala R W, Stone R E, et al. Journal of Vacuum Science & Technology A, 1988, 64(4), 2559
141 Pekala R W. Journal of Materials Science, 1989, 24(9), 3221.
142 Pekala R W, Alviso C T, Lemay J D. Journal of Non-Crystalline Solids, 1990, 125(1-2), 67.
143 Maleki H. Chemical Engineering Journal, 2016, 300(1385-8947), 98.
144 Zhou L, Xu Z. Journal of Hazardous Materials, 2020, 388, 121804.
145 Nogi M, Kurosaki F, Yano H, et al. Carbohydrate Polymers, 2010, 81(4), 919.
146 Cheng H, Gu B, Pennefather M P, et al. Materials & Design, 2017, 130, 452.
147 Chatterjee S, Ke W T, Liao Y C. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 261.
148 Jiao Y, Wan C, Qiang T, et al. Applied Physics A, 2016, 122(7), 686.
149 Guan H, Cheng Z, Wang X. ACS Nano, 2018, 12(10), 10365.
150 Fu B, Yang Q, Yang F. ACS Omega, 2020, 5(14), 8181.
151 Liang H W, Guan Q F, Chen L F, et al. Angewandte Chemie International Edition in English, 2012, 51(21), 5101.
152 Bi H, Yin Z, Cao X, et al. Advanced Materials, 2013, 25(41), 5916.
153 Bidgoli H, Mortazavi Y, Khodadadi A A. Journal of Hazardous Mate-rials, 2019, 366, 299.
154 Gong X, Wang Y, Zeng H, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(13), 11118.
155 Li Z, Zhong L, Zhang T, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(11), 9984.
156 Thai Q B, Nguyen S T, Ho D K, et al. Carbohydrate Polymers, 2020, 228, 115365.
157 Yang R, Cao Q, Liang Y, et al. Chemical Engineering Journal, 2020, 401, 126150.
158 Feng J, Nguyen S T, Fan Z, et al. Chemical Engineering Journal, 2015, 270, 168.
159 Lazzari L K, Zampieri V B, Neves R M, et al. Cellulose, 2018, 26(2), 1231.
160 Do N H N, Luu T P, Thai Q B, et al. Materials Technology, 2019, 35(11-12), 807.
161 Hu J, Zhu J, Ge S, et al. Surface and Coatings Technology, 2020, 385(3), 125361.
162 Liu H, Geng B, Chen Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(1), 49.
163 Mahmoud M A. Arabian Journal of Chemistry, 2020, 13(6), 5553.
164 Chhajed M, Yadav C, Agrawal A K, et al. Carbohydrate Polymers, 2019, 226, 115286.
[1] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[2] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[3] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[4] 郭鑫, 苏宏玺, 赵鸿, 欧阳成伟, 强小虎, 黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究[J]. 材料导报, 2023, 37(5): 21090278-8.
[5] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[6] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[7] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[8] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[9] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[10] 韩风雷, 刘艳, 刘涛, 张学富, 吕洋, 扎西尼玛. SiO2气凝胶对超细水泥基材料性能影响的试验研究[J]. 材料导报, 2023, 37(15): 22080137-7.
[11] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[12] 马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
[13] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[14] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[15] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed