Preparation and Application of Plant Cellulose-based Aerogel for Oil Adsorption
FAN Tingyu1, ZHAO Jie1,2, PENG Dan2,*, GUO Xuetao3
1 College of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China 2 Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China 3 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
Abstract: In recent years, the rapid development of the world economy has resulted in massive consumption of oil, which is considered as a non-renewable resource and has been supplied as an important energy and raw materials for human survival and social evolution. However, the up rush of oil consumption has produced a large amount of oil-containing waste water, which poses great harm to the environment. To date, the main oil-water separation technologies for oil pollution remediation include physical, chemical, and biological methods. Among the various technologies, sorption with oil-absorbing material is regarded as a cost-effective and efficient method, which is capable of effectively separating and recovering oil as a resource from oily water. Therefore, the development of low-cost, recyclable and environmentally friendly adsorbents as oil-water separation materials are gaining more attention. In terms of the material forms, the oil-waterseparation materials can be classified into three categories, namely, powder/granular one-dimensional materials, membrane two-dimensional materials, and three-dimensional aerogels. Due to the advantages of high porosity, large specific surface area, good elasticity, and convenient operation, aerogels have gradually been applied in the field of oil/water separation. Oil can be recovered easily through simple physical squeezing, while the production of oil adsorbents from fibrous waste can provide additional economic and environmental benefits. Compared with the silica-, and graphene-based aerogels, cellulose-based ones have emerged as one of the hottest research topics, owing to their advantages of ubiquity, renewability, cost-effectiveness, low density, and biodegradability. In addition, the hybrid aerogels prepared from plant cellulose, graphene oxides, sodium alginate, chitosan and other materials can be used in a variety of harsh environments due to their high-strength, flame retardant, compressive properties. In this review, the state-of-the-art research progress in developing cellulose-based aerogels for highly efficient oil/water separationis summarized. The drying methods (supercritical drying, atmospheric drying and freeze drying), freezing methods (conventional freezing, unidirectional freezing and bidirectional freezing), hydrophobic modification and oil absorption properties of the materials are summarized emphatically. Finally, the existing problems of plant cellulose-based aerogels for oil sorption are discussed, and the future developments are prospected.
通讯作者: *彭丹,深圳信息职业技术学院交通与环境学院副教授、硕士研究生导师。2005年湘潭大学环境工程专业本科毕业,2008年湖南大学环境科学与工程专业硕士毕业,2013年华南理工大学与美国宾夕法尼亚州立大学环境科学专业博士毕业。目前主要从事溢油修复材料、生物质吸附材料、生物酶催化等方面的研究工作。发表论文50余篇,包括Bioresource Technology、Journal of Hazardous Materials、Journal of Materials Chemistry A、Chemospher等。pengdan987@hotmail.com
1 Wan W, Lin Y, Prakash A, et al. Journal of Materials Chemistry A, 2016, 4(48), 18687. 2 Beyer J, Trannum H C, Bakke T, et al. Marine Pollution Bulletin, 2016, 110(1), 28. 3 Cheng Z,Bai X,Wang X D, et al. Oil-Gas Field Surface Engineering,2014, 33(7), 25 (in Chinese). 程壮, 白翔, 王晓东, 等. 油气田地面工程,2014, 33(7), 25. 4 Liu W, Cui S, Li J P, et al. Materials Reports, 2020, 34(9), 9019 (in Chinese). 刘伟, 崔升, 李建平,等. 材料导报, 2020, 34(9), 9019. 5 Yang W J, Anthony C, Yin Y, et al. Cellulose, 2019, 26(11), 6449. 6 Korhonen J T, Kettunen M, Ras R H, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813. 7 Saleem J, Adil Riaz M, Gordon M. Journal of Hazardous Materials, 2018, 341, 424. 8 Laitinen O, Suopajärvi T, Österberg M, et al. ACS Applied Materials & Interfaces, 2017, 9(29), 25029. 9 He J X, Zhang Z, Han J X, et al. New Chemical Materials 2020, 48(6), 29 (in Chinese). 何静娴, 张政, 韩景新, 等. 化工新型材料, 2020, 48(6), 29. 10 He J, Zhao H, Li X, et al. Journal of Hazardous Materials, 2018, 346, 199. 11 Yang W, Wang N N, Ping P, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 40032. 12 Yang W, Yuen A C Y, Ping P, et al. Composites Part A: Applied Science and Manufacturing, 2019, 119, 196. 13 Kistler S S. The Journal of Physical Chemistry, 1932, 36(1), 52. 14 Olalekan A P, Dada A O, Adesina O A. Journal of Encapsulation and Adsorption Sciences, 2014, 04(4), 122. 15 Gurav J L, Jung I K, Park H H, et al. Journal of Nanomaterials, 2010, 409310, 1. 16 Tan C, Fung B M, Newman J K, et al. Advanced Materials, 2010, 13(9), 644. 17 Sun Q, Zheng H, Li J, et al. Carbohydrate Polymers, 2016, 136(20), 95. 18 Zhang S, Feng J, Feng J, et al. Chemical Engineering Journal, 2017, 309, 700. 19 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26(11), 6449. 20 Lee S, Jeong M J, Kang K Y. Journal of the Korean Physical Society, 2015, 67(4), 738. 21 Jiang F, Hsieh Y L. ACS Applied Materials & Interfaces, 2017, 9(3), 2825. 22 Phanthong P, Reubroycharoen P, Kongparakul S, et al. Carbohydrate Polymers, 2018, 190, 184. 23 Halim A, Xu Y, Lin K H, et al. Separation and Purification Technology, 2019, 224, 322. 24 Yu H, Tong Z, Qiao Y, et al. Journal of Solid State Chemistry, 2020, 291, 121624. 25 Araby S, Qiu A, Wang R, et al. Journal of Materials Science, 2016, 51(20), 9157. 26 Bisson A, Rigacci A, Lecomte D, et al. Drying Technology, 2003, 4(4), 593. 27 Sescousse R, Smacchia A, Budtova T. Cellulose, 2010, 17(6), 1137. 28 Innerlohinger J, Weber H K, Kraft G. Macromolecular Symposia, 2006, 244(1), 126. 29 Karadagli I, Schulz B, Schestakow M, et al. The Journal of Supercritical Fluids, 2015, 106, 105. 30 Shi J, Lu L, Guo W, et al. Plastics, Rubber and Composites, 2014, 44(1), 26. 31 Sun Q F, Lu Y, Wan C C, et al. Frontiers of Agricultural Science and Engineering, 2014, 1(1), 46. 32 Wu M B, Huang S, Liu C, et al. Journal of Materials Chemistry A, 2020, 8(22), 11354. 33 Cai J, Liu S, Feng J, et al. Angewandte Chemie International Edition in English, 2012, 51(9), 2076. 34 Dilamian M, Noroozi B. Carbohydrate Polymers, 2021, 251, 117016. 35 Shamskar K R, Heidari H, Rashidi A. Industrial Crops and Products, 2016, 93(25), 203. 36 Aalbers G J W, Boott C E, D'Acierno F, et al. Biomacromolecules, 2019, 20(7), 2779. 37 Tang J, Song Y, Zhao F, et al. Carbohydrate Polymers, 2018, 208, 404. 38 Fu S Y. China Pulp & Paper, 2019, 38(6), 54(in Chinese). 付时雨.中国造纸, 2019, 38(6), 54. 39 Katz J S, Burdick J A. Macromolecular Bioscience, 2010, 10(4), 339. 40 Li H, Wang Z, Liu X, et al. Chemical Physics Letters, 2020, 755, 137805. 41 Liao Q, Su X, Zhu W, et al. RSC Advances, 2016, 6(68), 63773. 42 Thomas H, Andreas K. Polímeros, 2005, 15(2), 84. 43 Ass B A, Ciacco G T, Frollini E. Carbohydrate Polymers, 2006, 63(1), 19. 44 Zaman A, Huang F, Jiang M, et al. Energy and Built Environment, 2020, 1(1), 60. 45 Guillou J, Lavadiya D N, Munro T, et al. Applied Thermal Engineering, 2018, 128, 1372. 46 Olsson C, Westm G. Direct Dissolution of Cellulose: Background, Means and Applications, Intech, United States, 2013, pp.143. 47 Zhang J, Zhang X, Luo N. ACS Sustainable Chemistry & Engineering, 2016, 4(8), 4417. 48 Yan C, Li H, Yi Z, et al. Journal of Applied Polymer Science, 2010, 116(1), 547. 49 Schittenhelm N, Kulicke W M. Macromolecular Chemistry & Physics, 2000, 201(15), 1976. 50 Chen Y, Wang Z X, Li Q Z, et al. Chemistry and Industry of Forest Pro-ducts, 2019, 39(4), 49(in Chinese). 陈妍, 王梓鑫, 李奇臻, 等. 林产化学与工业, 2019, 39(4), 49. 51 Paulauskiene T, Uebe J, Karasu A U, et al. Water, Air, & Soil Pollution, 2020, 231(8), 424. 52 Liu H, Geng B, Chen Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 5(1), 49. 53 Siró I, Plackett D. Cellulose, 2010, 17(3), 459. 54 Asim N, Badiei M, AlghoulM A, et al. Industrial & Engineering Chemistry Research, 2019, 58(38), 17621. 55 Xiao S, Gao R, Lu Y, et al. Carbohydrate Polymers, 2015, 119, 202. 56 Zhang Y, Yin M, Lin X, et al. Chemical Engineering Journal, 2019, 371, 306. 57 Wang X, Zhang Y, JiangH, et al. Materials Research Express, 2017, 4(6), 065006. 58 Wang K, Liu X, Tan Y, et al. Chemical Engineering Journal, 2019, 371, 769. 59 Yang R, Cao Q, Liang Y, et al. Chemical Engineering Journal, 2020, 401, 126150. 60 Zhu Z, Fu S, Lucia LA. ACS Sustainable Chemistry & Engineering, 2019, 7(19), 16428. 61 Zhou L, Zhai S, Chen Y, et al. Polymers (Basel), 2019, 11(4), 712. 62 Wan C, Li J. Carbohydrate Polymers, 2016, 150, 172. 63 Huang W, Zhang L, Lai X, et al. Chemical Engineering Journal, 2020, 386, 123994. 64 Yang J, Xia Y, Xu P, et al. Cellulose, 2018, 25(6), 3533. 65 Zhang H, Wang J, Xu G, et al. Journal of Hazardous Materials, 2020, 406, 124758. 66 Li Z, Shao L, Hu W, et al. Carbohydrate Polymers, 2018, 191, 183. 67 El-Naggar M E, Othman S I, Allam A A, et al. International Journal of Biological Macromolecules, 2020, 145, 1115. 68 Cheng Q, Huang C, Tomsia A P. Advanced Materials, 2017, 29(45), 1703155. 69 Grishkewich N, Liu L, Wang C, et al. Chemical Engineering Journal, 2019, 366, 531. 70 Wang X, Zhang Y, Jiang H, et al. Materials Letters, 2016, 183, 179. 71 Darpentigny C, Nonglaton G, Bras J, et al. Carbohydrate Polymers, 2020, 229, 115560. 72 Lee S, Kang K Y, Jeong M J, et al. Journal Korean Physical Society, 2017, 71(8), 483. 73 Ras R, Ikkala O, Korhonen J T, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813. 74 Cervin N T, Aulin C, Larsson P T, et al. Cellulose, 2012, 19(2), 401. 75 Zheng, Q F, Cai z y, Gong S Q. Journal of Materials Chemistry A, 2014, 2(9), 3110. 76 Plappert S F, Quraishi S, Nedelec J M, et al. Chemistry of Materials, 2018, 30(7), 2322. 77 Ferreira E S, Rezende C A, Cranston E D. Green Chemistry, 2021, 23(10), 3542. 78 Pierre A C, Pajonk G. Chemical Reviews, 2002, 34(4), 4243. 79 Gao H, Bo L, Liu P, et al. Solar Energy Materials and Solar Cells, 2019, 201, 110122. 80 García-González C, Camino-Rey M C, Alnaief M, et al. The Journal of Supercritical Fluids, 2012, 66, 297. 81 Liebner F, Potthast A, Rosenau T, et al. Holzforschung, 2008, 62(2), 129. 82 Darpentigny C, Nonglaton G, Bras J, et al. Carbohydrate Polymers, 2020, 229, 115560. 83 Matsuyama K, Morotomi K, Inoue S, et al. The Journal of Supercritical Fluids, 2019, 143, 1. 84 Shimizu T, Kanamori K, Maeno A, et al. Chemistry of Materials, 2016, 28(19), 6860. 85 Aravind P R, Shajesh P, Soraru G D, et al. Journal of Sol-Gel Science and Technology, 2010, 54(1), 105. 86 Venkateswara R A, Nilsen E, Einarsrud M A. Journal of Non-Crystalline Solids, 2001, 296(3), 165. 87 Josset S, Hansen L, Orsolini P, et al. Cellulose, 2017, 24(9), 3825. 88 Li Y, Tanna V A, Zhou Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(8), 6387. 89 Li Y, Grishkewich N, Liu L, et al. Chemical Engineering Journal, 2019, 366, 531. 90 Wu Z Y, Li C, Liang H W, et al. Angewandte Chemie International Edition, 2013, 52(10), 2925. 91 Jiang F, Liu H, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 10(1), 1104. 92 Zhang H, Lyu S, Zhou X, et al. Journal of Colloid and Interface Science, 2019, 536, 245. 93 Cheng Q,Huang C, Tomsia A P. Advanced Materials, 2017, 29(45), 1703155. 94 Shao G, Hanaor D, Shen X, et al. Advanced Materials, 2020, 32(17), 1907176. 95 Wu J X, Dong Y, Xia J Y, et al. Chemistry and Industry of Forest Products, 2020, 40(3), 52(in Chinese). 伍锦秀, 董勇, 夏剑雨, 等. 林产化学与工业, 2020, 40(3), 52. 96 Oetjen G W. Freeze-drying, Second Edition, Wiley-VCH, Germany 2007,pp. 1. 97 Sehaqui H, Salajková M, Zhou Q, et al. Soft Matter, 2010, 6(8), 1824. 98 Chen W, Yu H, Li Q, et al. Soft Matter, 2011, 7(21), 10360. 99 Kobayashi Y, Saito T, Isogai A. Angewandte Chemie International Edition in English, 2014, 53(39), 10394. 100 Martoïa F, Cochereau T, Dumont P J J, et al. Materials & Design, 2016, 104, 376. 101 Li W L, Lu K, Walz J Y. International Materials Reviews, 2013, 57(1), 37. 102 Gao W, Wang M, Bai H. Journal of the Mechanical Behavior of Biome-dical Materials, 2020, 109, 103820. 103 Geng H. International Journal of Biological Macromolecules, 2018, 118, 921. 104 Nemoto J, Saito T, Isogai A. ACS Applied Materials & Interfaces, 2015, 7(35), 19809. 105 Kasraian K, DeLuca P P. Pharmaceutical Research, 1995, 12(4), 484. 106 Yu Z, Dai T, Yuan S, et al. ACS Applied Materials & Interfaces, 2020, 12(27), 30990. 107 Zhang X, Liu M, Wang H, et al. Carbohydrate Polymers, 2019, 208, 232. 108 Mi H Y, Jing X, Politowicz A L, et al. Carbon, 2018, 132, 199. 109 Yang M, Zhao N, Cui Y, et al. ACS Nano, 2017, 11(7), 6817. 110 Jiménez-Saelices C, Seantier B, Cathala B, et al. Carbohydrate Polymers, 2017, 157, 105. 111 Nguyen D D, Vu C M, Vu H T, et al. Materials (Basel), 2019, 12(9), 1407. 112 Niu F, Wu N, Yu J, et al. Carbohydrate Polymers, 2020, 242, 116422. 113 Chen Y, Fan D, Lyu S, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(1), 1381. 114 Jaafar Z, Quelennec B, Moreau C, et al. Carbohydrate Polymers, 2020, 247, 116642. 115 Chen Y, Yang S, Fan D, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 12878. 116 Guo Z G, Liu W M. Progress in Chemistry, 2006, 18(6), 721(in Chinese). 郭志光, 刘维民. 化学进展, 2006, 18(6), 721. 117 Rafieian F, Hosseini M, Jonoobi M, et al. Cellulose, 2018, 25(8), 4695. 118 Zhao L, Li L, Wang Y, et al. Applied Physics A, 2017, 124(1), 9. 119 Li Y, Zhu L, Grishkewich N, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9367. 120 Lin R, Li A, Zheng T, et al. RSC Advances, 2015, 5(100), 82027. 121 Jiang F, Hsieh Y L. ACS Omega, 2018, 3(3), 3530. 122 Zhang X, Wang H, Cai Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 7(1), 332. 123 Wu Z, Li Y, Zhang L, et al. Rsc Advances, 2017, 7(33), 20147. 124 Morais Zanata D, Battirola L C, Gonçalves M. Cellulose, 2018, 25(12), 7225. 125 Yu L, Zhang Z, Tang H, et al. Cellulose, 2019, 26(6), 4021. 126 Fatemeh R, Maleksadat H, Mehdi J, et al. Cellulose, 2018, 25, 4695. 127 Zheng Q, Cai Z, Gong S. Journal of Materials Chemistry A, 2014, 2(9), 3110. 128 Zhao L, Lian L, Wang Y, et al. Applied Physics A, 2018, 124(1), 9. 129 Xu Z, Jiang X, Zhou H, et al. Cellulose, 2017, 25(2), 1217. 130 Xu T, Wang Z, Ding Y, et al. Carbohydrate Polymers, 2018, 179, 164. 131 Zhou L, Zhai S, Chen Y, et al. Polymers (Basel), 2019, 11(4), 712. 132 He Z, Zhang X, Batchelor W. RSC Advances, 2016, 6(26), 21435. 133 Durgadevi N, Swarnalatha V. RSC Advances, 2017, 7(55), 34866. 134 Mulyadi A, Zhang Z, Deng Y. ACS Applied Materials & Interfaces, 2016, 8(4), 2732. 135 Sun F, Liu W, Dong Z, et al. Chemical Engineering Journal, 2017, 330(12), 774. 136 Lazzari L K, Zampieri V B, Zanini M, et al. Cellulose, 2017, 24(8), 3421. 137 Granström M, née Pääkkö M K, Jin H, et al. Polymer Chemistry, 2011, 2(8), 1789. 138 Ressouche E, Molina-Boisseau S, Mazeau K, et al. Cellulose, 2020, 27(14), 7979. 139 Shang Q, Liu C, Hu Y, et al. Carbohydrate Polymers, 2018, 191, 168. 140 Hair L M, Pekala R W, Stone R E, et al. Journal of Vacuum Science & Technology A, 1988, 64(4), 2559 141 Pekala R W. Journal of Materials Science, 1989, 24(9), 3221. 142 Pekala R W, Alviso C T, Lemay J D. Journal of Non-Crystalline Solids, 1990, 125(1-2), 67. 143 Maleki H. Chemical Engineering Journal, 2016, 300(1385-8947), 98. 144 Zhou L, Xu Z. Journal of Hazardous Materials, 2020, 388, 121804. 145 Nogi M, Kurosaki F, Yano H, et al. Carbohydrate Polymers, 2010, 81(4), 919. 146 Cheng H, Gu B, Pennefather M P, et al. Materials & Design, 2017, 130, 452. 147 Chatterjee S, Ke W T, Liao Y C. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 261. 148 Jiao Y, Wan C, Qiang T, et al. Applied Physics A, 2016, 122(7), 686. 149 Guan H, Cheng Z, Wang X. ACS Nano, 2018, 12(10), 10365. 150 Fu B, Yang Q, Yang F. ACS Omega, 2020, 5(14), 8181. 151 Liang H W, Guan Q F, Chen L F, et al. Angewandte Chemie International Edition in English, 2012, 51(21), 5101. 152 Bi H, Yin Z, Cao X, et al. Advanced Materials, 2013, 25(41), 5916. 153 Bidgoli H, Mortazavi Y, Khodadadi A A. Journal of Hazardous Mate-rials, 2019, 366, 299. 154 Gong X, Wang Y, Zeng H, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(13), 11118. 155 Li Z, Zhong L, Zhang T, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(11), 9984. 156 Thai Q B, Nguyen S T, Ho D K, et al. Carbohydrate Polymers, 2020, 228, 115365. 157 Yang R, Cao Q, Liang Y, et al. Chemical Engineering Journal, 2020, 401, 126150. 158 Feng J, Nguyen S T, Fan Z, et al. Chemical Engineering Journal, 2015, 270, 168. 159 Lazzari L K, Zampieri V B, Neves R M, et al. Cellulose, 2018, 26(2), 1231. 160 Do N H N, Luu T P, Thai Q B, et al. Materials Technology, 2019, 35(11-12), 807. 161 Hu J, Zhu J, Ge S, et al. Surface and Coatings Technology, 2020, 385(3), 125361. 162 Liu H, Geng B, Chen Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(1), 49. 163 Mahmoud M A. Arabian Journal of Chemistry, 2020, 13(6), 5553. 164 Chhajed M, Yadav C, Agrawal A K, et al. Carbohydrate Polymers, 2019, 226, 115286.