Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030193-7    https://doi.org/10.11896/cldb.21030193
  金属与金属基复合材料 |
电沉积法制备含钼合金的研究进展
田娅1, 马立文1,2,*, 席晓丽1,2,3
1 北京工业大学材料科学与工程学院,先进功能材料教育部重点实验室,北京 100124
2 北京工业大学省部级共建资源循环利用与材料技术资本协同创新中心,北京 100124
3 北京工业大学工业大数据应用技术国家工程实验室,北京 100124
Development of Molybdenum-containing Alloys Prepared by Electrodeposition
TIAN Ya1, MA Liwen1,2,*, XI Xiaoli1,2,3
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 Provincial and Ministerial Co-construction of Resource Recycling and Material Technology Capital Collaborative Innovation Center, Beijing University of Technology, Beijing 100124, China
3 National Engineering Laboratory of Industrial Big Data Application Technology, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含钼合金具有较高的硬度、优异的耐磨耐腐蚀性能和催化析氢性能,作为涂层和电极材料在金属防护、电解水制氢等领域得到了广泛的应用。电沉积法具有沉积速度快、沉积镀层致密及产物种类多等优点,是制备含钼合金的重要技术之一。
   早期电沉积法用于制备二元含钼合金,对其电沉积工艺及机理的研究较为深入,但通过调整工艺参数的方法对二元含钼合金性能的提高仍旧有限。为了改善二元含钼合金的性能,添加合金元素制备多元含钼合金以及添加粒子制备粒子掺杂含钼合金成为近年的研究热点和趋势。
   多元含钼合金中添加的元素主要包括C、Fe、P、W、Cr等,能有效改善其不同方面的性能。改善催化析氢性能的元素有C、Zn、Sn、S、Fe、P等,其机理在于它们与铁族元素和钼元素能产生协同作用;提高显微硬度和耐磨耐腐蚀性能的元素有W、Cr、P等,其机理在于它们能改变合金结构,造成晶格畸变。粒子掺杂含钼合金中添加的粒子主要有ZrO2、TiO2、SiC、TiN等,能显著改善合金的显微硬度和耐磨耐腐蚀性能,这是因为纳米颗粒能在合金基质中弥散分布,起到细化晶粒及阻碍位错运动的作用。近两年,磁场、超声波辅助电沉积的工艺被大量应用到粒子掺杂含钼合金的制备中,实现了合金性能与电流效率的双提升。
   本文总结了近年来电沉积法制备含钼合金的研究进展,分别对二元含钼合金(如Ni-Mo和Co-Mo合金)、三元含钼合金(如Ni-Mo-Zn和Co-Mo-P合金)以及粒子掺杂合金(如Ni-Mo-ZrO2和Co-Mo-TiO2合金)的电沉积制备工艺、原理及合金性能等进行介绍,总结归纳了合金元素以及粒子掺杂改善含钼合金的异同点,分析了目前电沉积法制备含钼合金存在的问题及发展前景,以期为制备出性能更优异、应用更广泛的含钼合金提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田娅
马立文
席晓丽
关键词:  电沉积  二元含钼合金  多元含钼合金  粒子掺杂  稀土    
Abstract: As molybdenum-containing alloys show high hardness, excellent wear and corrosion resistance and catalytic hydrogen evolution performance, they have been extensively used as wear and corrosion resistant coatings and electrode materials in the fields of metal protection, hydrogen production from electrolytic water. Due to its advantages such as fast speed, dense coating and abundant products, electrodeposition has become one of the dominant technologies for the preparation of molybdenum containing alloys.
In the early years, electrodeposition was used to prepare merely binary molybdenum alloys, and its process and mechanism were deeply studied. However, the properties of binary molybdenum alloys were limited, which could not easily be improved by adjusting the process parameters. There's a tendency in recent years to improve the properties of binary molybdenum alloys by adding other elements to prepare multicomponent molybdenum alloys or/and adding particles to prepare particle doping molybdenum alloys.
Elements of C, Fe, P, W and Cr have the positive effect on different properties of the molybdenum-containing alloys. C, Zn, Sn, S, Fe and P in the alloys appear to result in improving the catalytic hydrogen evolution performance with the mechanism of a synergistic effect among the metallic elements. W, Cr and P achieve an improvement on the microhardness, wear resistance and corrosion resistance of the alloys due to the change of structure and lattice distortion. For particle doping, ZrO2, TiO2, SiC, TiN in the alloys are appropriate to improve the microhardness, wear resistance and corrosion resistance, because they are dispersed in the alloy matrix, refining grains and hindering dislocation movement. Recently, magnetic field and ultrasonic technique are more and more introduced in the electrodeposition process of the particle doping molybdenum alloys to improve both the alloy performance and current efficiency.
This review offers a retrospection of the research efforts with respect to electrodeposition of molybdenum containing alloys, provides elaborate descriptions of the electrodeposition technology,mechanism and alloy properties of binary molybdenum-containing alloys such as Ni-Mo and Co-Mo, multicomponent molybdenum-containing alloys such as Ni-Mo-Zn and Co-Mo-P, and particle doping molybdenum-containing alloys such as Ni-Mo-ZrO2 and Co-Mo-TiO2, and sums up the similarities and differences of alloying elements and particle on improving properties. We then show solicitude for the problems of the molybdenum containing alloys. We are confident that the molybdenum-containing alloys have a bright future in the development and innovation of better properties and wider applications.
Key words:  electrodeposition    binary molybdenum-containing alloy    multi-element molybdenum-containing alloy    particle doping    rare earth
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TQ153  
基金资助: 国家重点研发计划(2018YFC1901700);国家自然科学基金-国家杰出青年科学基金(52025042)
通讯作者:  *maliwen@bjut.edu.cn,马立文,博士,副教授。2006年获中南大学冶金工程学士学位,2011年获中南大学冶金物理化学博士学位,2011年至今在北京工业大学材料学院从事教学和科研工作。主要研究方向为金属二次资源分离回收理论与技术。在Separation and Purification Technology、Hydrometallurgy、Journal of Applied Electrochemistry、Colloids and Surfaces A: Physicochem. Eng.Aspects和Microporousand Mesoporous Materials等期刊发表学术论文30余篇。   
作者简介:  田娅,2019年6月毕业于山东理工大学,获得工科学士学位,现为北京工业大学材料与制造学部硕士研究生,在马立文副教授的指导下进行研究。目前主要研究领域为金属电沉积理论技术与材料制备。
引用本文:    
田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
TIAN Ya, MA Liwen, XI Xiaoli. Development of Molybdenum-containing Alloys Prepared by Electrodeposition. Materials Reports, 2023, 37(3): 21030193-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030193  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030193
1 Zhang H X, Li H, Liang J L, et al.Multipurpose Utilization of Mineral Resources,2020(1), 47 (in Chinese).
张汉鑫, 李慧, 梁精龙, 等.矿产综合利用, 2020(1), 47.
2 Dong D, Wang C Y.Powder Metallurgy Technology,2017,35(4),304 (in Chinese).
董帝, 王承阳.粉末冶金技术, 2017,35(4), 304.
3 Lan H Y, Ma C Y ,Li Y, et al.Ordnance Material Science and Enginee-ring,2015,38(3), 52 (in Chinese).
兰宏宇, 马春阳, 李洋, 等.兵器材料科学与工程, 2015,38(3),52.
4 Yan B H, Wei G N, Li C X, et al.Acta Armamentarii,2018,39(4),753 (in Chinese).
颜丙辉, 魏广宁, 李晨霞, 等.兵工学报, 2018,39(4),753.
5 Du N, Zhao Q.Materials Protection, 1994(11),8 (in Chinese).
杜楠,赵晴.材料保护,1994(11),8.
6 Kong Y. Preparation of Co-P, Co-Mo-P electrode materials by electrodeposition and its hydrogen evolution performance. Master's Thesis, Harbin Engineering University,China, 2019(in Chinese).
孔玉. 电沉积法制备Co-P、Co-Mo-P电极材料及其析氢性能的探究. 硕士学位论文,哈尔滨工程大学, 2019.
7 Li Y M, Lin L, Dai W S, et al.Electroplating & Finishing,2020,39(9), 521(in Chinese).
李艺萌, 林立, 戴武帅, 等.电镀与涂饰, 2020,39(9),521.
8 Huang X Y. Preparation of Ni-Mo coating by pulse electrodeposition and its tribology and corrosion behavior. Master's Thesis, Guangdong University of Technology,China,2018(in Chinese).
黄晓晔. 镍钼镀层的脉冲电沉积制备及其摩擦学与腐蚀行为研究.硕士学位论文, 广东工业大学, 2018.
9 Wasekar N P, Verulakar S, Vamsi M V N, et al.Surface and Coatings Technology, 2019,370,298.
10 Lee C Y, Mao W T, Ger M D, et al.Surface and Coatings Technology, 2019,366,286.
11 Zhou Z F, Li N, Chen X.Electroplating & Pollution Control,2017,37(4),10 (in Chinese).
周子凡, 李娜, 陈忻.电镀与环保, 2017,37(4),10.
12 Gómez E, Pellicer E, Vallés E.Journal of Electroanalytical Chemistry, 2003,556,137.
13 Qi H D, Guo Z, Lu S, et al.Hydrometallurgy of China, 2019,38(2),149 (in Chinese).
齐海东, 郭昭, 卢帅, 等.湿法冶金, 2019,38(2),149.
14 Peng W Y, Zhu F, Deng X H, et al.Surface Technology,2020,49(1),173 (in Chinese).
彭文屹, 朱峰, 邓晓华, 等.表面技术, 2020,49(1),173.
15 Zhang L N, Wen L J, Zhou Z Y,et al.Surface Technology, 2020,49(9),182 (in Chinese).
张丽楠, 温林洁, 周宗熠, 等.表面技术, 2020,49(9),182.
16 Evariste U, Jiang G, Yu B, et al.Journal of Energy Storage, 2020,29,101419.
17 Ashraf M A, Liu Z L, Pham B T, et al.Journal of Electroanalytical Chemistry, 2020,873,114351.
18 Mahdi Allam, Mohamed Benaicha, Achour Dakhouche.International Journal of Hydrogen Energy, 2018, 43(6),3394.
19 Luo Beiping, Gong Zhuqing, Ren Biye, et al.Transactions of Nonferrous Metals Society of China, 2006, 16(3),623.
20 Uttam K C, Satya P P, Ashwani K P, et al.International Journal of Hydrogen Energy, 2020, 45(41),21892.
21 Yar-Mukhamedova G, Ved M V, Sakhnenko N, et al.Applied Surface Science, 2018,445,298.
22 Li X F, Tan J H, Guo X C.Electroplating & Pollution Control,2019,39(6),33 (in Chinese).
李晓芳, 谭菊华, 郭小春.电镀与环保, 2019,39(6),33.
23 Aaboubi O, Msellak K.Applied Surface Science, 2017,396,375.
24 Winiarski J, Tylus W, Krawczyk M S, et al.Electrochemical Acta, 2016,196,708.
25 Safizadeh F, Sorour N, Ghali E, et al.International Journal of Hydrogen Energy, 2016, 42(8), 5455.
26 Laszczynska A, Winiarski J, Szczygieł B, et al.Applied Surface Science, 2016,369,224.
27 Krawiec H, Vignal V, Krystianiak A, et al.Applied Surface Science, 2019,475(1),162.
28 Shetty A R, Hegde A C.Materials Science for Energy Technologies, 2018, 1(2),97.
29 Jiang Jibo, Feng Chenqi, Qian Wei, et al.Materials Chemistry and Physics, 2017, 199,239.
30 Morteza Alizadeh, Abbas Cheshmpish.Applied Surface Science, 2019, 466,433.
31 Mousavia R, Bahrololooma M E, Deflorian F.Materials & Design, 2016, 110,456.
32 Zhang W, Li B S, Ji C.Ceramics International, 2019,45(11),14015.
33 Xia F, Li Q, Ma C Y, et al.Ceramics International, 2020,46(6),7961.
34 Jiang W, Shen L D, Xu M Y, et al.Journal of Alloys and Compounds, 2019,791,847.
35 Ji R J, Han K, Jin H, et al.Journal of Manufacturing Processes, 2020, 57,787.
36 Tian S C, Cui H Z, Zhang G S, et al.Transactions of Materials and Heat Treatment,2019, 40(2),140 (in Chinese).
田水昌, 崔洪芝, 张国松,等.材料热处理学报, 2019, 40(2),140.
37 Li B, Jiang X F, Wan H Q, et al.Tribology International, 2018, 125,1.
38 Li B S, Zhang W W, Zhang W, et al.Journal of Alloys and Compounds, 2017, 702,38.
39 Zhang W W, Du S S, Li B S, et al.Journal of Alloys and Compounds, 2021, 865,158722.
40 Li G R, Tong Y X, Liu G K.The Chinese Journal of Nonferrous Metals,2003(5),1297 (in Chinese).
李高仁,童叶翔,刘冠昆.中国有色金属学报,2003(5),1297.
41 Gong X Z, Tang J N, Li J Q, et al.Transactions of Nonferrous Metals Society of China, 2008,18(3),642.
42 Wang L, Fan Y J, Wei L, et al.Journal of Electrochemistry,2015,21(6),543 (in Chinese).
王莉, 樊友军, 韦露, 等.电化学, 2015,21(6),543.
43 Bagri P, Luo H M, Popovs I, et al.Electrochemistry Communications, 2018,96,88.
44 Li M. Electrodeposition of rare earth magnesium alloys in choline chloride urea lonic liquid and its mechansim study. Master's Thesis, Qinghai Normal University,China,2019 (in Chinese).
李苗. 氯化胆碱-尿素离子液体中电沉积稀土镁合金及机理研究.硕士学位论文,青海师范大学, 2019.
45 Guo L, Song R, Dan X G, et al.China Molybdenum Industry,2017,41(2),45 (in Chinese).
郭磊, 宋瑞, 淡新国, 等.中国钼业, 2017,41(2),45.
46 Zheng Z. Research on Ni-based ceria composite hydrogenevolution reaction electrode prepared by electrodeposition method. Ph.D. Thesis, Harbin Institute of Technology,China,2013(in Chinese).
郑振. 电沉积法制备镍基二氧化铈复合催化析氢电极的研究. 博士学位论文,哈尔滨工业大学, 2013.
47 Hu T S, Shi Z J, Shao W, et al.Surface and Coatings Technology, 2019,377,124850.
48 Yang J, Chen G, Chen Z, et al.Transactions of Nonferrous Metals Society of China, 2020,30(12),3296.
49 Peng C, Wu R X, Yang Y H N, et al.Journal of Colloid and Interface Science, 2020,580,768.
50 Li Y W. Study on technology and performances of Ni-TiO2-La2O3 compo-site plating by electrodeposition. Master's Thesis, Shanghai Ocean Unversity,China,2008(in Chinese).
李玉伟.电沉积Ni-TiB2-La2O3复合镀层工艺及其性能研究.硕士学位论文,上海海洋大学, 2008.
51 Yu Y Z, Gan Y M, Huang C Q, et al.International Journal of Hydrogen Energy, 2020,45(33),16528.
52 Grabchenko M, Pantaleo G, Puleo F, et al.International Journal of Hydrogen Energy, 2021,46(11),7939.
53 Asaithambi S, Sakthivel P, Karuppaiah M, et al.Journal of Energy Storage, 2021,36,102402.
54 Yousef A, Al-enizi A M, Mohamed I M A, et al.Ceramics International, 2020,46(10),15034.
55 Huang Y B, Chen L X, Jia X, et al.Thin Solid Films, 2020,709,138131.
56 Chen D, Wang Q S, Liu Y B, et al.Surface and Coatings Technology, 2020,403,126387.
[1] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[2] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[3] 武素丽, 荀文斐, 张淑芬. 稀土氟化物上转换纳米晶尺寸调控的研究进展[J]. 材料导报, 2023, 37(3): 22110116-8.
[4] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[5] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[6] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[7] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[8] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[9] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[10] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[11] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[12] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[13] 李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆. 稀土掺杂对稀土-镁基合金储氢性能的影响[J]. 材料导报, 2022, 36(20): 22010264-8.
[14] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[15] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed