Development of Molybdenum-containing Alloys Prepared by Electrodeposition
TIAN Ya1, MA Liwen1,2,*, XI Xiaoli1,2,3
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China 2 Provincial and Ministerial Co-construction of Resource Recycling and Material Technology Capital Collaborative Innovation Center, Beijing University of Technology, Beijing 100124, China 3 National Engineering Laboratory of Industrial Big Data Application Technology, Beijing University of Technology, Beijing 100124, China
Abstract: As molybdenum-containing alloys show high hardness, excellent wear and corrosion resistance and catalytic hydrogen evolution performance, they have been extensively used as wear and corrosion resistant coatings and electrode materials in the fields of metal protection, hydrogen production from electrolytic water. Due to its advantages such as fast speed, dense coating and abundant products, electrodeposition has become one of the dominant technologies for the preparation of molybdenum containing alloys. In the early years, electrodeposition was used to prepare merely binary molybdenum alloys, and its process and mechanism were deeply studied. However, the properties of binary molybdenum alloys were limited, which could not easily be improved by adjusting the process parameters. There's a tendency in recent years to improve the properties of binary molybdenum alloys by adding other elements to prepare multicomponent molybdenum alloys or/and adding particles to prepare particle doping molybdenum alloys. Elements of C, Fe, P, W and Cr have the positive effect on different properties of the molybdenum-containing alloys. C, Zn, Sn, S, Fe and P in the alloys appear to result in improving the catalytic hydrogen evolution performance with the mechanism of a synergistic effect among the metallic elements. W, Cr and P achieve an improvement on the microhardness, wear resistance and corrosion resistance of the alloys due to the change of structure and lattice distortion. For particle doping, ZrO2, TiO2, SiC, TiN in the alloys are appropriate to improve the microhardness, wear resistance and corrosion resistance, because they are dispersed in the alloy matrix, refining grains and hindering dislocation movement. Recently, magnetic field and ultrasonic technique are more and more introduced in the electrodeposition process of the particle doping molybdenum alloys to improve both the alloy performance and current efficiency. This review offers a retrospection of the research efforts with respect to electrodeposition of molybdenum containing alloys, provides elaborate descriptions of the electrodeposition technology,mechanism and alloy properties of binary molybdenum-containing alloys such as Ni-Mo and Co-Mo, multicomponent molybdenum-containing alloys such as Ni-Mo-Zn and Co-Mo-P, and particle doping molybdenum-containing alloys such as Ni-Mo-ZrO2 and Co-Mo-TiO2, and sums up the similarities and differences of alloying elements and particle on improving properties. We then show solicitude for the problems of the molybdenum containing alloys. We are confident that the molybdenum-containing alloys have a bright future in the development and innovation of better properties and wider applications.
通讯作者: *maliwen@bjut.edu.cn,马立文,博士,副教授。2006年获中南大学冶金工程学士学位,2011年获中南大学冶金物理化学博士学位,2011年至今在北京工业大学材料学院从事教学和科研工作。主要研究方向为金属二次资源分离回收理论与技术。在Separation and Purification Technology、Hydrometallurgy、Journal of Applied Electrochemistry、Colloids and Surfaces A: Physicochem. Eng.Aspects和Microporousand Mesoporous Materials等期刊发表学术论文30余篇。
田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
TIAN Ya, MA Liwen, XI Xiaoli. Development of Molybdenum-containing Alloys Prepared by Electrodeposition. Materials Reports, 2023, 37(3): 21030193-7.
1 Zhang H X, Li H, Liang J L, et al.Multipurpose Utilization of Mineral Resources,2020(1), 47 (in Chinese). 张汉鑫, 李慧, 梁精龙, 等.矿产综合利用, 2020(1), 47. 2 Dong D, Wang C Y.Powder Metallurgy Technology,2017,35(4),304 (in Chinese). 董帝, 王承阳.粉末冶金技术, 2017,35(4), 304. 3 Lan H Y, Ma C Y ,Li Y, et al.Ordnance Material Science and Enginee-ring,2015,38(3), 52 (in Chinese). 兰宏宇, 马春阳, 李洋, 等.兵器材料科学与工程, 2015,38(3),52. 4 Yan B H, Wei G N, Li C X, et al.Acta Armamentarii,2018,39(4),753 (in Chinese). 颜丙辉, 魏广宁, 李晨霞, 等.兵工学报, 2018,39(4),753. 5 Du N, Zhao Q.Materials Protection, 1994(11),8 (in Chinese). 杜楠,赵晴.材料保护,1994(11),8. 6 Kong Y. Preparation of Co-P, Co-Mo-P electrode materials by electrodeposition and its hydrogen evolution performance. Master's Thesis, Harbin Engineering University,China, 2019(in Chinese). 孔玉. 电沉积法制备Co-P、Co-Mo-P电极材料及其析氢性能的探究. 硕士学位论文,哈尔滨工程大学, 2019. 7 Li Y M, Lin L, Dai W S, et al.Electroplating & Finishing,2020,39(9), 521(in Chinese). 李艺萌, 林立, 戴武帅, 等.电镀与涂饰, 2020,39(9),521. 8 Huang X Y. Preparation of Ni-Mo coating by pulse electrodeposition and its tribology and corrosion behavior. Master's Thesis, Guangdong University of Technology,China,2018(in Chinese). 黄晓晔. 镍钼镀层的脉冲电沉积制备及其摩擦学与腐蚀行为研究.硕士学位论文, 广东工业大学, 2018. 9 Wasekar N P, Verulakar S, Vamsi M V N, et al.Surface and Coatings Technology, 2019,370,298. 10 Lee C Y, Mao W T, Ger M D, et al.Surface and Coatings Technology, 2019,366,286. 11 Zhou Z F, Li N, Chen X.Electroplating & Pollution Control,2017,37(4),10 (in Chinese). 周子凡, 李娜, 陈忻.电镀与环保, 2017,37(4),10. 12 Gómez E, Pellicer E, Vallés E.Journal of Electroanalytical Chemistry, 2003,556,137. 13 Qi H D, Guo Z, Lu S, et al.Hydrometallurgy of China, 2019,38(2),149 (in Chinese). 齐海东, 郭昭, 卢帅, 等.湿法冶金, 2019,38(2),149. 14 Peng W Y, Zhu F, Deng X H, et al.Surface Technology,2020,49(1),173 (in Chinese). 彭文屹, 朱峰, 邓晓华, 等.表面技术, 2020,49(1),173. 15 Zhang L N, Wen L J, Zhou Z Y,et al.Surface Technology, 2020,49(9),182 (in Chinese). 张丽楠, 温林洁, 周宗熠, 等.表面技术, 2020,49(9),182. 16 Evariste U, Jiang G, Yu B, et al.Journal of Energy Storage, 2020,29,101419. 17 Ashraf M A, Liu Z L, Pham B T, et al.Journal of Electroanalytical Chemistry, 2020,873,114351. 18 Mahdi Allam, Mohamed Benaicha, Achour Dakhouche.International Journal of Hydrogen Energy, 2018, 43(6),3394. 19 Luo Beiping, Gong Zhuqing, Ren Biye, et al.Transactions of Nonferrous Metals Society of China, 2006, 16(3),623. 20 Uttam K C, Satya P P, Ashwani K P, et al.International Journal of Hydrogen Energy, 2020, 45(41),21892. 21 Yar-Mukhamedova G, Ved M V, Sakhnenko N, et al.Applied Surface Science, 2018,445,298. 22 Li X F, Tan J H, Guo X C.Electroplating & Pollution Control,2019,39(6),33 (in Chinese). 李晓芳, 谭菊华, 郭小春.电镀与环保, 2019,39(6),33. 23 Aaboubi O, Msellak K.Applied Surface Science, 2017,396,375. 24 Winiarski J, Tylus W, Krawczyk M S, et al.Electrochemical Acta, 2016,196,708. 25 Safizadeh F, Sorour N, Ghali E, et al.International Journal of Hydrogen Energy, 2016, 42(8), 5455. 26 Laszczynska A, Winiarski J, Szczygieł B, et al.Applied Surface Science, 2016,369,224. 27 Krawiec H, Vignal V, Krystianiak A, et al.Applied Surface Science, 2019,475(1),162. 28 Shetty A R, Hegde A C.Materials Science for Energy Technologies, 2018, 1(2),97. 29 Jiang Jibo, Feng Chenqi, Qian Wei, et al.Materials Chemistry and Physics, 2017, 199,239. 30 Morteza Alizadeh, Abbas Cheshmpish.Applied Surface Science, 2019, 466,433. 31 Mousavia R, Bahrololooma M E, Deflorian F.Materials & Design, 2016, 110,456. 32 Zhang W, Li B S, Ji C.Ceramics International, 2019,45(11),14015. 33 Xia F, Li Q, Ma C Y, et al.Ceramics International, 2020,46(6),7961. 34 Jiang W, Shen L D, Xu M Y, et al.Journal of Alloys and Compounds, 2019,791,847. 35 Ji R J, Han K, Jin H, et al.Journal of Manufacturing Processes, 2020, 57,787. 36 Tian S C, Cui H Z, Zhang G S, et al.Transactions of Materials and Heat Treatment,2019, 40(2),140 (in Chinese). 田水昌, 崔洪芝, 张国松,等.材料热处理学报, 2019, 40(2),140. 37 Li B, Jiang X F, Wan H Q, et al.Tribology International, 2018, 125,1. 38 Li B S, Zhang W W, Zhang W, et al.Journal of Alloys and Compounds, 2017, 702,38. 39 Zhang W W, Du S S, Li B S, et al.Journal of Alloys and Compounds, 2021, 865,158722. 40 Li G R, Tong Y X, Liu G K.The Chinese Journal of Nonferrous Metals,2003(5),1297 (in Chinese). 李高仁,童叶翔,刘冠昆.中国有色金属学报,2003(5),1297. 41 Gong X Z, Tang J N, Li J Q, et al.Transactions of Nonferrous Metals Society of China, 2008,18(3),642. 42 Wang L, Fan Y J, Wei L, et al.Journal of Electrochemistry,2015,21(6),543 (in Chinese). 王莉, 樊友军, 韦露, 等.电化学, 2015,21(6),543. 43 Bagri P, Luo H M, Popovs I, et al.Electrochemistry Communications, 2018,96,88. 44 Li M. Electrodeposition of rare earth magnesium alloys in choline chloride urea lonic liquid and its mechansim study. Master's Thesis, Qinghai Normal University,China,2019 (in Chinese). 李苗. 氯化胆碱-尿素离子液体中电沉积稀土镁合金及机理研究.硕士学位论文,青海师范大学, 2019. 45 Guo L, Song R, Dan X G, et al.China Molybdenum Industry,2017,41(2),45 (in Chinese). 郭磊, 宋瑞, 淡新国, 等.中国钼业, 2017,41(2),45. 46 Zheng Z. Research on Ni-based ceria composite hydrogenevolution reaction electrode prepared by electrodeposition method. Ph.D. Thesis, Harbin Institute of Technology,China,2013(in Chinese). 郑振. 电沉积法制备镍基二氧化铈复合催化析氢电极的研究. 博士学位论文,哈尔滨工业大学, 2013. 47 Hu T S, Shi Z J, Shao W, et al.Surface and Coatings Technology, 2019,377,124850. 48 Yang J, Chen G, Chen Z, et al.Transactions of Nonferrous Metals Society of China, 2020,30(12),3296. 49 Peng C, Wu R X, Yang Y H N, et al.Journal of Colloid and Interface Science, 2020,580,768. 50 Li Y W. Study on technology and performances of Ni-TiO2-La2O3 compo-site plating by electrodeposition. Master's Thesis, Shanghai Ocean Unversity,China,2008(in Chinese). 李玉伟.电沉积Ni-TiB2-La2O3复合镀层工艺及其性能研究.硕士学位论文,上海海洋大学, 2008. 51 Yu Y Z, Gan Y M, Huang C Q, et al.International Journal of Hydrogen Energy, 2020,45(33),16528. 52 Grabchenko M, Pantaleo G, Puleo F, et al.International Journal of Hydrogen Energy, 2021,46(11),7939. 53 Asaithambi S, Sakthivel P, Karuppaiah M, et al.Journal of Energy Storage, 2021,36,102402. 54 Yousef A, Al-enizi A M, Mohamed I M A, et al.Ceramics International, 2020,46(10),15034. 55 Huang Y B, Chen L X, Jia X, et al.Thin Solid Films, 2020,709,138131. 56 Chen D, Wang Q S, Liu Y B, et al.Surface and Coatings Technology, 2020,403,126387.