Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20080298-10    https://doi.org/10.11896/cldb.20080298
  无机非金属及其复合材料 |
基于二维层状半导体材料的电化学传感器性能研究及应用进展
李慧娟1, 刘诗斌1, 冯晴亮2
1 西北工业大学电子信息学院,西安 710129
2 西北工业大学化学与化工学院,西安 710129
Research and Application Progress of Electrochemical Sensors Based on Two-dimensional Layered Semiconductor Materials
LI Huijuan1, LIU Shibin1, FENG Qingliang2
1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
2 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
下载:  全 文 ( PDF ) ( 8271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着半导体产业技术的进步,电子信息及智能设备对小体积、低功耗、高集成度、性能优异的半导体器件的需求越来越大。二维(2D)层状半导体材料有着原子级厚度的几何结构,并且由于尺寸效应、量子效应的影响,该类材料往往表现出独特的电学、光学性质。2D材料基电子器件的迁移率、开关比及光电响应等性能优良,在高性能芯片、光电探测器、传感器及柔性电子器件领域有着广阔的应用前景。   传统传感器的选择性低、功率要求大且灵敏度低,使其应用受到一定的限制。研制出成本低、稳定性高、检测限低及智能化的微型传感器是该领域的关键方向之一。近年来,层出不穷的新材料和新结构被应用于各种传感器中,包括氮化硼(h-BN)、黑磷(BP)及2D过渡金属硫族化合物(TMDs)等,这些新材料显著改善了传感器件的性能。然而,制备难度大、材料成本高等缺点限制了2D材料基传感器的大规模应用,同时,传感器的稳定性及重复性也有待进一步提高。   本文归纳了基于TMDs电子器件的最新研究进展,从敏感材料、传感性能、灵敏度等方面对气体传感器、葡萄糖传感器及pH传感器进行了探讨,分析了2D材料基传感器的性能特点并对其应用前景进行了展望。根据不同材料的性能优化器件的结构,通过表面掺杂、修饰、改性等方式对2D材料进行处理,最终为制备高稳定性、高灵敏度的传感器提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧娟
刘诗斌
冯晴亮
关键词:  二维材料  电子器件  传感器  灵敏度    
Abstract: With the advancement of semiconductor industry technology, the entire field of electronic information and smart devices has an increasingly urgent requirement of small size, low power, high integration, and excellent performance of semiconductor devices. Two-dimensional (2D) layered semiconductor materials have shown a geometric structure with atomic thickness, and due to the size effects and quantum effects, pre-sent unique electrical and optical properties. In view of the excellent performance of mobility, switching ratio, and photoelectric response, 2D material-based electronic devices have shown promising application prospects in many fields, including high-performance chips, photodetectors, sensors and flexible electronic devices. Traditional sensors have shown low selectivity, high power, and low sensitivity requirements, which limits their further applications. Therefore, developing low-cost, high-stability, low-detection limit, and intelligent miniature sensors is one of the key directions in this field. In recent years, some new materials and new device structures have been applied into various sensors, including boron nitride (h-BN), black phosphorus (BP) and 2D transition metal chalcogenides (TMDs), which significantly improved the performance of sensors. However, 2D material-based sensors are difficult to prepare and the material cost is high, which limits the large-scale application of 2D material-based sensors in practical field. Meanwhile the stability and repeatability of the sensor need to be further improved. In this review, the latest developments in many aspects of TMDs-based electronic devices (including gas sensors, glucose sensors and pH sensors) are summarized from the aspect of sensitive materials, sensing performance, and sensitivity. In addition, the performance of 2D mate-rial-based sensors and their application prospects are discussed. The performance and structure of different 2D material-based devices are analyzed. Moreover, a series of methods to improve device performance and broaden the applications range of device are summarized, including doping, modification, and modification of the surface of 2D materials. In summary, this review provides a reference for the preparation of sensors with high stability and high sensitivity.
Key words:  two-dimensional materials    electronic device    sensors    sensitivity
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TP212  
基金资助: 国家自然科学基金(61873209;51802266)
通讯作者:  liushibin@nwpu.edu.cn; fengql@nwpu.edu.cn   
作者简介:  李慧娟,2008年6月毕业于陕西科技大学,获工学学士学位。2013年6月毕业于西安石油大学,获硕士学位。现为西北工业大学电子信息学院博士研究生,目前主要研究领域为二维材料的制备、生物传感器。
刘诗斌,西北工业大学电子信息学院教授、博士生导师。分别于1988年和2001年在西北工业大学获得硕士学位和博士学位。2004年,英国诺丁汉大学电工与电子工程学院访问学者。研究领域包括微传感器和智能传感器、MEMS和集成电路设计。
冯晴亮,博士,西北工业大学化学与化工学院副教授,硕士生导师。先后入选第六届中国科协“青年人才托举项目”(2020年)及Nanoscale Horizons (IF=9.93)的Community Board。2011年、2016年先后在兰州大学化学与化工学院取得学士、博士学位;2012—2016年在北京大学纳米化学中心张锦老师课题组为联合培养博士生。2016年7月加入西北工业大学大学至今,致力于二维材料批量制备的新机理与新方法、性质调控及光电器件应用研究。已在Advanced Materials, ACS Applied Nano Materials, Applied Catalysis B-Environmental, Small等材料科学领域顶级期刊发表学术论文50余篇。
引用本文:    
李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
LI Huijuan, LIU Shibin, FENG Qingliang. Research and Application Progress of Electrochemical Sensors Based on Two-dimensional Layered Semiconductor Materials. Materials Reports, 2022, 36(1): 20080298-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080298  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20080298
[1] Li M J. Optoelectrical properties and applications study of two dimensio-nal layered semiconductors based devices. Ph.D. Thesis, East China Normal University, China, 2019(in Chinese).
李梦姣. 二维层状半导体材料的光电器件性能与应用研究. 博士学位论文, 华东师范大学, 2019.
[2] Novoselov K S, Geim A K, Morozov, S V, et al. Science, 2004, 306(5696), 666.
[3] Song L, Ci L J, Lu H, et al. Nano Letters, 2010, 10(8), 3209.
[4] Lee C, Wei X D, Kysar J W, et al. Science, 2008, 321(5887), 385.
[5] Gómez-Navarro C, Burghard M, Kern K. Nano Letters, 2008, 8(7), 2045.
[6] Service R F. Science, 2009, 324(5929), 875.
[7] Wei X L, Chen Y P, Liu W L, et al. In: Chinese Physical Society, Hangzhou, 2011, pp.1.
[8] Feng Y J, Wei Y P, Zhao X H, et al. Chemical Research and Application 2011, 23(4), 444.
[9] Zhang B, Cui T. In: Micro Electro Mechanical Systems (MEMS), Cancun, 2011, pp.1353.
[10] Lin W D, Chang H M, Wu R J. Sensors & Actuators B: Chemical, 2013, 181, 326.
[11] Wiench P, Gonzalez Z, Gryglewicz S, et al. Journal of Electroanalytical Chemistry, 2019, 852,113547.
[12] Fan Y M, Zhang J M, Mi C, et al. Chinese Journal of Analytical Chemistry, 2018, 46(1), 33.
[13] Zhang H Y, Liu S. Journal of Alloys and Compounds, 2020, 842,155873.
[14] Zhang F, Huang S, Guo Q, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2020, 602,125076.
[15] Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005, 438(7065), 201.
[16] Yoon J, Park W, Bae G Y, et al. Small, 2013, 9(19), 3295.
[17] Wang H, Yu L, Lee Y H, et al. Nano Letters, 2012, 12(9), 4674.
[18] Zhao W, Ghorannevis Z, Chua L, et al. ACS Nano, 2013, 7 (1), 791.
[19] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699.
[20] Ding X, Ma X Y. New Chemical Materials, 2018, 46(S1), 11(in Chinese).
丁馨, 马锡英. 化工新型材料, 2018, 46(S1), 11.
[21] Buscema M, Groenendijk D J, Blanter S I, et al. Nano Letters, 2014, 14(6), 3347.
[22] Li L, Yu Y, Ye G J, et al. Nature Nanotechnology, 2014, 9(5), 372.
[23] Shim B S, Chen W, Doty C, et al. Nano Letters, 2008, 8(12), 4151.
[24] Ammu S, Dua V, Agnihotra S R, et al. Journal of the American Chemical Society, 2012, 134(10), 4553.
[25] Wang J, Zhang X, Huang X, et al. Small, 2013, 9(22), 3759.
[26] Wang X, Cui Y, Li T, et al. Advanced Optical Materials, 2018, 7(3), 1801274.
[27] Hu X. Design of energy conversion and storage devices based on low dimensionalnanomaterials. Ph.D. Thesis, University of Science and Technology of China, China, 2015(in Chinese).
胡鑫. 基于低维纳米材料的能量转换与存储器件的设计. 博士学位论文, 中国科学技术大学, 2015.
[28] Li W, Zhou J, Cai S, et al. Nature Electronics, 2019, 2(12), 563.
[29] Chen X, Chen X, Han Y, et al. Nanotechnology, 2019, 30(44), 445503.
[30] Ma C Y, Fu W F, Huang G W, et al. Acta Chimica Sinica, 2015, 73(9), 949(in Chinese).
马春燕, 傅伟飞, 黄国伟, 等. 化学学报, 2015, 73(9), 949.
[31] Shen Y X. Preparation and properties of two dimensional material based composite electrode for supercapacitor. Master's Thesis, University of Electronic Science and Technology of China, China, 2017(in Chinese).
沈逸欣. 二维材料制备及其在超级电容器中的性能研究. 硕士学位论文, 电子科技大学, 2017.
[32] Ping J, Fan Z, Sindoro M, et al. Advanced Functional Materials, 2017, 27(19), 1605817.
[33] Wang T Y, Zhu R Z, Zhuo J Q, et al. Analytical Chemistry, 2014, 86(24), 12064.
[34] Wachter S, Polyushkin D K, Bethge O, et al. Nature Communications, 2017, 8(1), 14948.
[35] Lopez-Sanchez O, Lembke D, Kayci M, et al. Nature Nanotechnology, 2013, 8(7), 497.
[36] Rai R K, Islam S, Roy A, et al. Nanoscale, 2019, 11(3), 870.
[37] Zhu W, Yogeesh M N, Yang S, et al. Nano Letters, 2015, 15(3), 1883.
[38] Choi M, Bae S R, Hu L, et al. Science Advances, 2020, 6(28), eabb5898.
[39] Zhao J, Li N, Yu H, et al. Advanced Materials, 2017, 29(34),1702076.
[40] Sharma A K, Kaur B, Popescu V A. Optical Materials, 2020, 102,10928.
[41] Liu S H, Wang L F, Feng X L, et al. Advanced Materials, 2017, 29(16),1606346.
[42] Wu W, Wang L, Li Y, et al. Nature, 2014, 514(7523), 470.
[43] Li J, Bao R R, Tao J, et al. Journal of Materials Chemistry C, 2018, 6(44), 11878.
[44] Chen T Y, Loan P T K, Hsu C L, et al. Biosensors and Bioelectronics, 2013, 41, 103.
[45] Xie H, Li Y T, Lei Y M, et al. Analytical Chemistry, 2016, 88, (22), 11115.
[46] Bednorz J G, Müller K A. Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), 189.
[47] Huang Y, Sutter, E, Shi N N, et al. Acs Nano, 2015, 9(11), 10612.
[48] Li H, Yin Z, He Q, et al. Small, 2012, 8(1), 63.
[49] Coleman J N, Lotya M, ONeill A, et al. Science, 2011, 6017(331), 568.
[50] Joensen P, Frindt R F, Morrison S R. Materials Research Bulletin, 1986, 21(4), 457.
[51] Jung Y, Zhou Y, Cha J J. Inorganic Chemistry Frontiers, 2016, 3(4), 452.
[52] Wu S F, Huang C M, Aivazian G, et al. ACS Nano, 2013, 7(3), 2768.
[53] Wang X J, Shang J, Zhu M J, et al. Nanoscale Horizons, 2020, 5(6), 954.
[54] Zhang S D, Wang C H, Qu F D, et al. Nanotechnology, 2020, 31(11),121250.
[55] Qu F D, Jiang H F, Yang M H. Nanoscale, 2016, 8(36), 16349.
[56] Wang Y Y, Duan G T, Zhu Y D, et al. Sensors and Actuators B: Chemical, 2016, 228, 74.
[57] Chen J L, Lotfi A, Hesketh P J, et al. Sensors and Actuators B: Chemical, 2019, 281, 1080.
[58] Sharma M, Jamdagni P, Kumar A, et al. In: DAE Solid State Physics Symposium.Noida, 2016, pp.140045.
[59] Late D J, Doneux T, Bougouma M. Applied Physics Letters, 2014, 105(23), 25.
[60] Chen X, Chen X W, Han Y T, et al. Nanotechnology, 2019, 30(44),122239.
[61] Choi S Y, Kim Y, Chung H S, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 3817.
[62] Kim J S, Yoo H W, Choi H O, et al. Nano Letters, 2014, 14(10), 5941.
[63] Cui S M, Wen Z H, Huang X K, et al. Small, 2015, 11(19), 2305.
[64] Liu J Y, Hu Z X, Zhang Y Z, et al. Nano-Micro Letters, 2020, 12(1), 24.
[65] Zhang S L, Thuy H N, Zhang W B, et al. Applied Physics Letters, 2017, 111(16), 161603-1.
[66] Li H, Yin Z Y, He Q Y, et al. Small, 2012, 8(1), 63.
[67] Late D J, Huang Y K, Liu B, et al. ACS Nano, 2013, 7(6), 4879.
[68] Cui S M, Wen Z H, Mattson E C, et al. Journal of Materials Chemistry A, 2013, 1(14), 4462.
[69] Cho B, Yoon J, Hahm M G, et al. Journal of Materials Chemistry C, 2014, 2(27), 5280.
[70] Liu B L, Chen L, Liu G, et al. ACS Nano, 2014, 8(5), 5304.
[71] Han Y T, Huang D, Ma Y J, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22640.
[72] Ko K Y, Park K, Lee S, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 23910.
[73] Ko K Y, Song J G, Kim Y, et al. ACS Nano, 2016, 10(10), 9287.
[74] Gatensby R, McEvoy N, Lee K, et al. Applied Surface Science, 2014, 297, 139.
[75] Huang J W, Dong Z P, Li Y R, et al. Materials Research Bulletin, 2013, 48(11), 4544.
[76] Huang J W, He Y Q, Jin J J, et al. Electrochimica ACTA, 2014, 136, 41.
[77] Li X, Ren K B, Zhang M, et al. Sensors And Actuators B: Chemical, 2019, 293, 122.
[78] Shan J J, Li J H, Chu X Y, et al. Rsc Advances, 2018, 8(15), 7942.
[79] Geng D, Bo X J, Guo L P. Sensors and Actuators B: Chemical, 2017, 244, 131.
[80] Ma K X, Sinha A, Dang X M, et al. Journal of the Electrochemical Society, 2019, 166(2), B147.
[81] Chen D. Research on key technology of light addressable potentiometric sensors. Ph.D. Thesis, Northwestern Polytechnical University, China, 2018(in Chinese).
陈东. 光寻址电位传感器关键技术研究. 博士学位论文, 西北工业大学, 2018.
[82] Chen D, Liu S B, Yin S M, et al. IET Science Measurement & Technology, 2016, 11(1), 57.
[83] Chen D, Liu S B, Yi, S M, et al. Optoelectronics Letters, 2016, 12(1), 27.
[84] Chen D, Liu S B, Li X L, et al. Journal of Optoelectronics. Laser, 2015(8), 1441(in Chinese).
陈东, 刘诗斌, 李学亮, 等,光电子·激光, 2015(8), 1441.
[85] Tan X B, Chuang H J, Lin M W, et al. Journal of Physical Chemistry C, 2013, 117(51), 27155.
[86] Ameri S K, Singh P K, Sonkusale S R. Analytica Chimica ACTA, 2016, 934, 212.
[87] Lei N, Li P F, Xue W, et al. Measurement Science and Technology, 2011, 22(10),107002.
[88] Kwon S S, Yi J, Lee W W, et al. Acs Applied Materials & Interfaces, 2015, 8(1), 834.
[89] Sarkar D, Liu W, Xie X J, et al. ACS Nano, 2014, 8(4), 3992.
[90] Lee C Y, Lei K F, Tsai S W, et al. Biochip Journal, 2016, 10(3), 182.
[91] Ang P K, Chen W, Wee A T S, et al. Journal of the American Chemical Society, 2008, 130(44), 14392.
[92] Cheng Z G, Li Q, Li Z J, et al. Nano Letters, 2010, 10(5), 1864.
[93] Yi J, Lee D H, Lee W W, et al. Journal of Physical Chemistry Letters, 2013, 4(13), 2099.
[1] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[2] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[3] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[4] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[5] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[6] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[7] 陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
[8] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[9] 武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
[10] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[11] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[12] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[13] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[14] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[15] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed