Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20090070-8    https://doi.org/10.11896/cldb.20090070
  金属与金属基复合材料 |
纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展
栗卓新1,2, 田振1, 李红1,2, 王义朋1, 曹健2, 周辰3
1 北京工业大学材料制造学部,北京 100124
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
3 江苏恒熠金属制品有限公司,江苏 泰州 225400
Research Progress on the Influence of Nanoparticles on Weld Strength and Microstructure of Aluminum Alloy
LI Zhuoxin1,2, TIAN Zhen1, LI Hong1,2, WANG Yipeng1, CAO Jian2, ZHOU Chen3
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
3 Jiangsu Hengyi Metal Products Co., Ltd., Taizhou 225400, Jiangsu, China
下载:  全 文 ( PDF ) ( 4114KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金材料具有密度小、比强度高、耐腐蚀性好等特点,是现代社会应用最为广泛的材料之一。纳米陶瓷颗粒具有高强度、高模量、热稳定性好等优点,随着纳米材料技术的不断发展,纳米陶瓷颗粒作为强化材料在铝合金焊接中的应用越来越得到重视。   铝合金焊接过程中存在焊缝组织粗化、接头软化和热裂纹等问题,导致铝合金接头在服役过程中失效。纳米颗粒添加入焊缝,具有细化焊缝晶粒、修饰二次相形貌、降低焊接热裂纹、强化焊缝性能的作用,已被用于航空、航天、汽车、高速动车等高强度铝合金的焊接领域。   近些年的研究表明,纳米颗粒的含量和成分等物理性质、焊接工艺以及纳米颗粒-基体的界面显著影响焊缝的组织和力学性能。随着纳米颗粒含量增加,焊缝强度显著提高,但是高含量的纳米颗粒容易诱发团聚。不同种类的纳米颗粒能够起到协同强化作用,此外焊接过程中焊接电流、搅拌摩擦参数以及超声和振动等工艺方法可以促使熔池流动提高纳米颗粒在焊缝中的分散程度,从而增强纳米颗粒的强化效果。   本文综述了近年来国内外关于纳米陶瓷颗粒在铝合金焊接中的最新研究现状,归纳总结了纳米陶瓷颗粒的物理性质和焊接工艺对复合焊缝强度的影响,重点分析了纳米陶瓷颗粒对焊缝微观组织和热裂纹的影响,介绍了纳米颗粒与基体的界面结合问题,并展望了其未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗卓新
田振
李红
王义朋
曹健
周辰
关键词:  铝合金焊接  纳米陶瓷颗粒  焊缝强度  热裂纹    
Abstract: Aluminum alloy is one of the most widely used materials in modern society because of its characteristics such as low density, high specific strength and good corrosion resistance. Nano-ceramic particles have the advantages of high strength, high modulus, good thermal stability, etc. With the continuous development of nano-material technology, the application of nano-ceramic particles as strengthening materials in aluminum alloy welding has been paid more and more attention. In the process of aluminum alloy welding, the problems such as weld microstructure roughening, joint softening and thermal crack are easy to lead to the failure of aluminum alloy joint in service.The addition of nanoparticles into welding seams has the functions of refining weld grain, modifying secondary phase morphology, reducing welding heat crack, and strengthening weld performance. It has been used in the welding field of high strength aluminum alloy such as aviation, aerospace, automobile and high-speed bullet vehicle. Recent studies have shown that the content, composition and other physical properties of nanoparticles, welding technology and nanoparticle-matrix interface have significant effects on the microstructure and mechanical properties of welding seams. With the increase of the content of nanoparticles, the weld strength was significantly increased, but the high content of nanoparticles was easy to induce agglomeration. Different kinds of nanoparticles can play a synergistic strengthening role. In addition, welding current, friction stir parameters, ultrasonic, vibration and other technological methods in the welding process can promote the flow of molten pool to improve the dispersion degree of nanoparticles in the welding seam and enhance the strengthening effect of nanoparticles. In this paper, the latest research status of nano-ceramic particles in aluminum alloy welding in recent years was reviewed, and the influence of the physical properties and welding technology of nano-ceramic particles on the strength of composite weld was summarized. The influence of nano-ceramic particles on the microstructure and thermal crack of welding seam was analyzed, the interface bonding between nano-particles and matrix was discussed, and the future research direction was prospected.
Key words:  aluminium alloy welding    nano-particle    weld strength    thermal crack
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TG401  
基金资助: 国家自然科学基金(52074017);北京市自然科学基金项目(3202002);先进焊接与连接国家重点实验室开放课题研究基金(AWJ-20-M01);2019年泰山产业领军人才蓝色人才专项(20190510)
通讯作者:  lih_bjut@163.com   
作者简介:  栗卓新,北京工业大学材料与制造学部教授,博士研究生导师。1984 年于天津大学获工学学士学位,1988 于太原工业大学获工学硕士学位, 1994 年于天津大学获工学博士学位, 1994—1996 年在天津大学国家燃烧学重点实验室博士后流动站从事博士后研究工作。主要研究方向:基于统计分析的焊接冶金与材料优化设计与质量控制,轻金属的精密连接,纳米热喷涂等。
李红, 北京工业大学材料与制造学部副教授,硕士研究生导师。2006年获北京科技大学材料加工工程专业博士学位,2006—2008 年在北京工业大学材料学院做博士后研究,2012—2013年在德国多特蒙德工业大学做国家公派访问学者。主要研究方向为轻金属焊接材料和工艺、钎焊与微纳连接、异种材料精密连接等,已发表论文 70 余篇, 授权国家专利 14项。
引用本文:    
栗卓新, 田振, 李红, 王义朋, 曹健, 周辰. 纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展[J]. 材料导报, 2022, 36(1): 20090070-8.
LI Zhuoxin, TIAN Zhen, LI Hong, WANG Yipeng, CAO Jian, ZHOU Chen. Research Progress on the Influence of Nanoparticles on Weld Strength and Microstructure of Aluminum Alloy. Materials Reports, 2022, 36(1): 20090070-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090070  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20090070
[1] Morin D, Fourmeau M, Brvik T, et al. European Journal of Mechanics-A/Solids, 2018, 69,99.
[2] Li H, Liu X S, Zhang Y S, et al. Materials Reports A:Review Papers, 2019, 33(12), 3853(in Chinese).
李红, 刘旭升, 张宜生, 等. 材料导报:综述篇, 2019, 33(12), 3853.
[3] Wu Z S, Jin P F, Gao S, et al.Welding Technology, 2010 (1), 1(in Chinese).
吴志生, 靳鹏飞, 高珊, 等. 焊接技术, 2010 (1), 1.
[4] Nassar A E, Nassar E E. Journal of King Saud University-Engineering Sciences, 2017, 29(3), 295.
[5] Panwar N, Chauhan A. Materials Today: Proceedings, 2018, 5(2), 5933.
[6] Li Z X, Cao X T, Wolfgang T. Journal of Beijing University of Technology, 2017, 43(10), 1582(in Chinese).
栗卓新, 曹晓涛, Wolfgang Tillmann.北京工业大学学报, 2017, 43(10), 1582.
[7] Alizadeh M, Paydar M H. Journal of Alloys and Compounds, 2010, 492(1-2), 231.
[8] Fattahi M, Mohammady M, Sajjadi N, et al. Journal of Materials Processing Technology, 2015, 217, 21.
[9] Florián-Algarín D, Ramos-Morales A, Marrero-García M, et al. Journal of Composites Science, 2018, 2(3), 50.
[10] Javadi A, Cao C, Li X. Procedia Manufacturing, 2017, 10, 531.
[11] Kumar K S A, Murigendrappa S M, Kumar H. Journal of Materials Research, 2019, 34(7), 1229.
[12] Xing W, Yu X, Li H, et al. Journal of Alloys and Compounds, 2017, 695, 574.
[13] Ramkumar K R, Natarajan S. Materials Science and Engineering: A, 2018, 727, 51.
[14] Sanaty-Zadeh A. Materials Science and Engineering: A, 2012, 531, 112.
[15] Ye X P, Li Y L, Weng J D, et al. Journal of Materials Engineering, 2018, 46(12), 28(in Chinese).
叶想平, 李英雷, 翁继东, 等.材料工程, 2018, 46(12), 28.
[16] Alizadeh M. Materials Research Bulletin, 2014, 59, 290.
[17] Mehrabi K, Khodabakhshi F, Zareh E, et al. Journal of Alloys and Compounds, 2016, 688, 143.
[18] Rahmatian B, Dehghani K, Mirsalehi S E. Journal of Manufacturing Processes, 2020, 52, 152.
[19] Fattahi M, Noei Aghaei V, Dabiri A R, et al. Materials Science and Engineering: A, 2015, 648, 47.
[20] Nie J, Wu Y, Li P, et al. CrystEngComm, 2012, 14(6), 2213.
[21] Xiang Z B, Nie J H, Wei S H, et al. Chinese Journal of Materials Research, 2015, 29(10), 744(in Chinese).
向兆兵, 聂俊辉, 魏少华, 等.材料研究学报, 2015, 29(10), 744.
[22] Ahmadi E, Ranjkesh M, Mansoori E, et al. Journal of Manufacturing Processes, 2017, 26, 173.
[23] Shen J, Liu K, Li Y, et al. Science and Technology of Welding and Joi-ning, 2013, 18(5), 404.
[24] Xie X, Shen J, Cheng L, et al. Materials & Design, 2015, 81, 31.
[25] Muzamil M, Wu J, Akhtar M, et al. Diamond and Related Materials, 2019, 97, 107442.
[26] Kulkarni A, Dwivedi D K, Vasudevan M. Materials Science & Enginee-ring A, 2018, 731, 309.
[27] Fattahi M, Rostami M, Amirkhanlu F, et al. Diamond and Related Materials, 2019, 99, 107518.
[28] Tsao L C, Chang S Y, Lee C I, et al. Materials & Design, 2010, 31(10), 4831.
[29] Xing W, Yu X, Li H, et al. Materials Science and Engineering: A, 2016, 678, 252.
[30] Tang Y, Li G Y, Pan Y C. Materials & Design, 2014, 55, 574.
[31] Singh T, Tiwari S K, Shukla D K. Materials Characterization, 2020, 159, 110047.
[32] Eskandari H, Taheri R, Khodabakhshi F. Materials Science and Engineering: A, 2016, 660, 84.
[33] Sahraeinejad S, Izadi H, Haghshenas M, et al. Materials Science and Engineering: A, 2015, 626, 505.
[34] Hu Q H, Zhang Y F, Xiong S, et al. Chinese Journal of Rare Metals, 2019, 43(10), 1023(in Chinese).
胡清华, 张义福, 熊斯, 等. 稀有金属, 2019, 43(10), 1023.
[35] Muzamil M, Wu J, Samiuddin M. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(1), 5.
[36] Xie X, Shen J, Gong F, et al. Science and Technology of Welding and Joining, 2015, 20(8), 686.
[37] Fattahi M, Ghaheri A, Arabian N, et al. Journal of Materials Processing Technology, 2020, 282,116672.
[38] Yousefpour N H, Omidvar H, Farahmand N M. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 232(10), 816.
[39] Kumar K S A, Murigendrappa S M, Kumar H, et al. Advances in mechanical design, materials and manufacture: Proceedings of the First International Conference on Design, Materials and Manufacture (ICDEM 2018). 2018.
[40] Mirjavadi S S, Alipour M, Emamian S, et al. Journal of Alloys and Compounds, 2017, 712, 795.
[41] Hamdollahzadeh A, Bahrami M, Farahmand N M. et al. Journal of Manufacturing Processes, 2015, 20, 367.
[42] Bahrami M, Givi M K B, Dehghani K, et al. Materials & Design, 2014, 53, 519.
[43] Fouladi S, Abbasi M. Journal of Materials Processing Technology, 2017, 243, 23.
[44] Holzer M, Hofmann K, Mann V, et al. Physics Procedia, 2016, 83, 463.
[45] Li J, Liu Q, Shi R, et al. Journal of Materials Processing Technology, 2008, 208(1-3), 105.
[46] Guo J, Gougeon P, Chen X G. Materials Science and Engineering: A, 2012, 553, 149.
[47] Chen L Y, Xu J Q, Li X C. Materials Research Letters, 2014, 3(1), 43.
[48] Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549(7672), 365.
[49] Ma C, Chen L, Cao C,et al. Nat Commun, 2017, 8, 14178.
[50] Choi Hongseok, Cho Woo-hyun, et al. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2013, 44A(4), 1897.
[51] Sokoluk M, Cao C, Pan S, et al. Nature communications, 2019, 10(1), 1.
[52] Zuo M, Sokoluk M, Cao C, et al. Scientific reports, 2019, 9(1), 1.
[53] Zhao Z, Liu L, Choi H S, et al. Microelectronics Reliability, 2016, 60, 126.
[54] Ding M, Xing W, Yu X. et al. Journal of Alloys and Compounds, 2018, 739, 481.
[55] Ding M. Ultrasonics Sonochemistry, 2019, 52, 150.
[56] Rahmatian B, Dehghani K, Mirsalehi S E. Journal of Manufacturing Processes, 2020, 52, 152.
[57] Bodaghi M, Dehghani K. The International Journal of Advanced Manufacturing Technology, 2016, 88(9-12), 2651.
[58] Moradi M M, Jamshidi Aval H, Jamaati R, et al. Materials Characterization, 2019, 152, 169.
[59] Yousefpour N H, Omidvar H, Farahmand N M. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 32(10), 816.
[60] Ghasali E, Alizadeh M, Ebadzadeh T. Journal of Alloys and Compounds, 2016, 655, 93.
[61] Guo B, Zhang X, Cen X, et al. Materials Characterization, 2018, 136, 272.
[62] Meng C, Cui H C, Lu F G, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(6), 1543.
[63] Liu Z Y, Xiao B L, Wang W G, et al. Carbon, 2013, 62, 35.
[64] Kong Y R, Guo Q, Zhang D. Materials Reports A:Review Papers, 2015, 29(9), 34(in Chinese).
孔亚茹, 郭强, 张荻.材料导报:综述篇,2015, 29(9), 34.
[65] Kwon H, Park D H, Silvain J F, et al. Composites Science and Technology, 2010, 70(3), 546.
[66] Guo B, Chen B, Zhang X, et al. Carbon, 2018, 135, 224.
[67] Li Y Z, Wang Q Z, Xiao B L, et al. Journal of Materials Processing Technology, 2018, 251, 305.
[68] Shin J H, Choi H J, Cho M K, et al. Journal of Composite Materials, 2012, 48(1), 99.
[69] Li Y, Zhao Y, Ortalan V, et al. Materials Science and Engineering: A, 2009, 527(1-2), 305.
[1] 王田田, 徐孟嘉, 徐济进, 余春, 陆皓. 焊接二次热循环对T23钢粗晶区再热裂纹敏感性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 56-59.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed