Research and Application Progress of Electrochemical Sensors Based on Two-dimensional Layered Semiconductor Materials
LI Huijuan1, LIU Shibin1, FENG Qingliang2
1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China 2 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
Abstract: With the advancement of semiconductor industry technology, the entire field of electronic information and smart devices has an increasingly urgent requirement of small size, low power, high integration, and excellent performance of semiconductor devices. Two-dimensional (2D) layered semiconductor materials have shown a geometric structure with atomic thickness, and due to the size effects and quantum effects, pre-sent unique electrical and optical properties. In view of the excellent performance of mobility, switching ratio, and photoelectric response, 2D material-based electronic devices have shown promising application prospects in many fields, including high-performance chips, photodetectors, sensors and flexible electronic devices. Traditional sensors have shown low selectivity, high power, and low sensitivity requirements, which limits their further applications. Therefore, developing low-cost, high-stability, low-detection limit, and intelligent miniature sensors is one of the key directions in this field. In recent years, some new materials and new device structures have been applied into various sensors, including boron nitride (h-BN), black phosphorus (BP) and 2D transition metal chalcogenides (TMDs), which significantly improved the performance of sensors. However, 2D material-based sensors are difficult to prepare and the material cost is high, which limits the large-scale application of 2D material-based sensors in practical field. Meanwhile the stability and repeatability of the sensor need to be further improved. In this review, the latest developments in many aspects of TMDs-based electronic devices (including gas sensors, glucose sensors and pH sensors) are summarized from the aspect of sensitive materials, sensing performance, and sensitivity. In addition, the performance of 2D mate-rial-based sensors and their application prospects are discussed. The performance and structure of different 2D material-based devices are analyzed. Moreover, a series of methods to improve device performance and broaden the applications range of device are summarized, including doping, modification, and modification of the surface of 2D materials. In summary, this review provides a reference for the preparation of sensors with high stability and high sensitivity.
李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
LI Huijuan, LIU Shibin, FENG Qingliang. Research and Application Progress of Electrochemical Sensors Based on Two-dimensional Layered Semiconductor Materials. Materials Reports, 2022, 36(1): 20080298-10.
[1] Li M J. Optoelectrical properties and applications study of two dimensio-nal layered semiconductors based devices. Ph.D. Thesis, East China Normal University, China, 2019(in Chinese). 李梦姣. 二维层状半导体材料的光电器件性能与应用研究. 博士学位论文, 华东师范大学, 2019. [2] Novoselov K S, Geim A K, Morozov, S V, et al. Science, 2004, 306(5696), 666. [3] Song L, Ci L J, Lu H, et al. Nano Letters, 2010, 10(8), 3209. [4] Lee C, Wei X D, Kysar J W, et al. Science, 2008, 321(5887), 385. [5] Gómez-Navarro C, Burghard M, Kern K. Nano Letters, 2008, 8(7), 2045. [6] Service R F. Science, 2009, 324(5929), 875. [7] Wei X L, Chen Y P, Liu W L, et al. In: Chinese Physical Society, Hangzhou, 2011, pp.1. [8] Feng Y J, Wei Y P, Zhao X H, et al. Chemical Research and Application 2011, 23(4), 444. [9] Zhang B, Cui T. In: Micro Electro Mechanical Systems (MEMS), Cancun, 2011, pp.1353. [10] Lin W D, Chang H M, Wu R J. Sensors & Actuators B: Chemical, 2013, 181, 326. [11] Wiench P, Gonzalez Z, Gryglewicz S, et al. Journal of Electroanalytical Chemistry, 2019, 852,113547. [12] Fan Y M, Zhang J M, Mi C, et al. Chinese Journal of Analytical Chemistry, 2018, 46(1), 33. [13] Zhang H Y, Liu S. Journal of Alloys and Compounds, 2020, 842,155873. [14] Zhang F, Huang S, Guo Q, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2020, 602,125076. [15] Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005, 438(7065), 201. [16] Yoon J, Park W, Bae G Y, et al. Small, 2013, 9(19), 3295. [17] Wang H, Yu L, Lee Y H, et al. Nano Letters, 2012, 12(9), 4674. [18] Zhao W, Ghorannevis Z, Chua L, et al. ACS Nano, 2013, 7 (1), 791. [19] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699. [20] Ding X, Ma X Y. New Chemical Materials, 2018, 46(S1), 11(in Chinese). 丁馨, 马锡英. 化工新型材料, 2018, 46(S1), 11. [21] Buscema M, Groenendijk D J, Blanter S I, et al. Nano Letters, 2014, 14(6), 3347. [22] Li L, Yu Y, Ye G J, et al. Nature Nanotechnology, 2014, 9(5), 372. [23] Shim B S, Chen W, Doty C, et al. Nano Letters, 2008, 8(12), 4151. [24] Ammu S, Dua V, Agnihotra S R, et al. Journal of the American Chemical Society, 2012, 134(10), 4553. [25] Wang J, Zhang X, Huang X, et al. Small, 2013, 9(22), 3759. [26] Wang X, Cui Y, Li T, et al. Advanced Optical Materials, 2018, 7(3), 1801274. [27] Hu X. Design of energy conversion and storage devices based on low dimensionalnanomaterials. Ph.D. Thesis, University of Science and Technology of China, China, 2015(in Chinese). 胡鑫. 基于低维纳米材料的能量转换与存储器件的设计. 博士学位论文, 中国科学技术大学, 2015. [28] Li W, Zhou J, Cai S, et al. Nature Electronics, 2019, 2(12), 563. [29] Chen X, Chen X, Han Y, et al. Nanotechnology, 2019, 30(44), 445503. [30] Ma C Y, Fu W F, Huang G W, et al. Acta Chimica Sinica, 2015, 73(9), 949(in Chinese). 马春燕, 傅伟飞, 黄国伟, 等. 化学学报, 2015, 73(9), 949. [31] Shen Y X. Preparation and properties of two dimensional material based composite electrode for supercapacitor. Master's Thesis, University of Electronic Science and Technology of China, China, 2017(in Chinese). 沈逸欣. 二维材料制备及其在超级电容器中的性能研究. 硕士学位论文, 电子科技大学, 2017. [32] Ping J, Fan Z, Sindoro M, et al. Advanced Functional Materials, 2017, 27(19), 1605817. [33] Wang T Y, Zhu R Z, Zhuo J Q, et al. Analytical Chemistry, 2014, 86(24), 12064. [34] Wachter S, Polyushkin D K, Bethge O, et al. Nature Communications, 2017, 8(1), 14948. [35] Lopez-Sanchez O, Lembke D, Kayci M, et al. Nature Nanotechnology, 2013, 8(7), 497. [36] Rai R K, Islam S, Roy A, et al. Nanoscale, 2019, 11(3), 870. [37] Zhu W, Yogeesh M N, Yang S, et al. Nano Letters, 2015, 15(3), 1883. [38] Choi M, Bae S R, Hu L, et al. Science Advances, 2020, 6(28), eabb5898. [39] Zhao J, Li N, Yu H, et al. Advanced Materials, 2017, 29(34),1702076. [40] Sharma A K, Kaur B, Popescu V A. Optical Materials, 2020, 102,10928. [41] Liu S H, Wang L F, Feng X L, et al. Advanced Materials, 2017, 29(16),1606346. [42] Wu W, Wang L, Li Y, et al. Nature, 2014, 514(7523), 470. [43] Li J, Bao R R, Tao J, et al. Journal of Materials Chemistry C, 2018, 6(44), 11878. [44] Chen T Y, Loan P T K, Hsu C L, et al. Biosensors and Bioelectronics, 2013, 41, 103. [45] Xie H, Li Y T, Lei Y M, et al. Analytical Chemistry, 2016, 88, (22), 11115. [46] Bednorz J G, Müller K A. Zeitschrift Fur Physik B-Condensed Matter, 1986, 64(2), 189. [47] Huang Y, Sutter, E, Shi N N, et al. Acs Nano, 2015, 9(11), 10612. [48] Li H, Yin Z, He Q, et al. Small, 2012, 8(1), 63. [49] Coleman J N, Lotya M, ONeill A, et al. Science, 2011, 6017(331), 568. [50] Joensen P, Frindt R F, Morrison S R. Materials Research Bulletin, 1986, 21(4), 457. [51] Jung Y, Zhou Y, Cha J J. Inorganic Chemistry Frontiers, 2016, 3(4), 452. [52] Wu S F, Huang C M, Aivazian G, et al. ACS Nano, 2013, 7(3), 2768. [53] Wang X J, Shang J, Zhu M J, et al. Nanoscale Horizons, 2020, 5(6), 954. [54] Zhang S D, Wang C H, Qu F D, et al. Nanotechnology, 2020, 31(11),121250. [55] Qu F D, Jiang H F, Yang M H. Nanoscale, 2016, 8(36), 16349. [56] Wang Y Y, Duan G T, Zhu Y D, et al. Sensors and Actuators B: Chemical, 2016, 228, 74. [57] Chen J L, Lotfi A, Hesketh P J, et al. Sensors and Actuators B: Chemical, 2019, 281, 1080. [58] Sharma M, Jamdagni P, Kumar A, et al. In: DAE Solid State Physics Symposium.Noida, 2016, pp.140045. [59] Late D J, Doneux T, Bougouma M. Applied Physics Letters, 2014, 105(23), 25. [60] Chen X, Chen X W, Han Y T, et al. Nanotechnology, 2019, 30(44),122239. [61] Choi S Y, Kim Y, Chung H S, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 3817. [62] Kim J S, Yoo H W, Choi H O, et al. Nano Letters, 2014, 14(10), 5941. [63] Cui S M, Wen Z H, Huang X K, et al. Small, 2015, 11(19), 2305. [64] Liu J Y, Hu Z X, Zhang Y Z, et al. Nano-Micro Letters, 2020, 12(1), 24. [65] Zhang S L, Thuy H N, Zhang W B, et al. Applied Physics Letters, 2017, 111(16), 161603-1. [66] Li H, Yin Z Y, He Q Y, et al. Small, 2012, 8(1), 63. [67] Late D J, Huang Y K, Liu B, et al. ACS Nano, 2013, 7(6), 4879. [68] Cui S M, Wen Z H, Mattson E C, et al. Journal of Materials Chemistry A, 2013, 1(14), 4462. [69] Cho B, Yoon J, Hahm M G, et al. Journal of Materials Chemistry C, 2014, 2(27), 5280. [70] Liu B L, Chen L, Liu G, et al. ACS Nano, 2014, 8(5), 5304. [71] Han Y T, Huang D, Ma Y J, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22640. [72] Ko K Y, Park K, Lee S, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 23910. [73] Ko K Y, Song J G, Kim Y, et al. ACS Nano, 2016, 10(10), 9287. [74] Gatensby R, McEvoy N, Lee K, et al. Applied Surface Science, 2014, 297, 139. [75] Huang J W, Dong Z P, Li Y R, et al. Materials Research Bulletin, 2013, 48(11), 4544. [76] Huang J W, He Y Q, Jin J J, et al. Electrochimica ACTA, 2014, 136, 41. [77] Li X, Ren K B, Zhang M, et al. Sensors And Actuators B: Chemical, 2019, 293, 122. [78] Shan J J, Li J H, Chu X Y, et al. Rsc Advances, 2018, 8(15), 7942. [79] Geng D, Bo X J, Guo L P. Sensors and Actuators B: Chemical, 2017, 244, 131. [80] Ma K X, Sinha A, Dang X M, et al. Journal of the Electrochemical Society, 2019, 166(2), B147. [81] Chen D. Research on key technology of light addressable potentiometric sensors. Ph.D. Thesis, Northwestern Polytechnical University, China, 2018(in Chinese). 陈东. 光寻址电位传感器关键技术研究. 博士学位论文, 西北工业大学, 2018. [82] Chen D, Liu S B, Yin S M, et al. IET Science Measurement & Technology, 2016, 11(1), 57. [83] Chen D, Liu S B, Yi, S M, et al. Optoelectronics Letters, 2016, 12(1), 27. [84] Chen D, Liu S B, Li X L, et al. Journal of Optoelectronics. Laser, 2015(8), 1441(in Chinese). 陈东, 刘诗斌, 李学亮, 等,光电子·激光, 2015(8), 1441. [85] Tan X B, Chuang H J, Lin M W, et al. Journal of Physical Chemistry C, 2013, 117(51), 27155. [86] Ameri S K, Singh P K, Sonkusale S R. Analytica Chimica ACTA, 2016, 934, 212. [87] Lei N, Li P F, Xue W, et al. Measurement Science and Technology, 2011, 22(10),107002. [88] Kwon S S, Yi J, Lee W W, et al. Acs Applied Materials & Interfaces, 2015, 8(1), 834. [89] Sarkar D, Liu W, Xie X J, et al. ACS Nano, 2014, 8(4), 3992. [90] Lee C Y, Lei K F, Tsai S W, et al. Biochip Journal, 2016, 10(3), 182. [91] Ang P K, Chen W, Wee A T S, et al. Journal of the American Chemical Society, 2008, 130(44), 14392. [92] Cheng Z G, Li Q, Li Z J, et al. Nano Letters, 2010, 10(5), 1864. [93] Yi J, Lee D H, Lee W W, et al. Journal of Physical Chemistry Letters, 2013, 4(13), 2099.