Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22040006-8    https://doi.org/10.11896/cldb.22040006
  无机非金属及其复合材料 |
不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变
丁健翔1,2, 夏欣欣2, 张凯歌2, 丁宽宽2, 马成建3, 张培根1,*, 孙正明1,2,*
1 东南大学材料科学与工程学院,江苏省先进金属材料重点实验室,南京 211189
2 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
3 盐城工学院分析测试中心,江苏 盐城 224051
Evolution of Phase, Microstructure and Physical Properties of Ti2SnC-reinforcing Ag-based Composite with Elevated Preparing Temperature
DING Jianxiang1,2, XIA Xinxin2, ZHANG Kaige2, DING Kuankuan2, MA Chengjian3, ZHANG Peigen1,*, SUN Zhengming1,2,*
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
3 Analytical and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
下载:  全 文 ( PDF ) ( 15817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大部分能源必须转化为电能才能为人类所利用,而在电能的传输和分配过程中,开关起着决定性作用。电触头是开关的核心组件,其质量和性能直接关系到终端设备工作的稳定性和安全性。长期以来,传统Ag/CdO复合电触头材料的毒性问题无法得到有效解决,而现有无Cd电触头材料 (Ag/SnO2、Ag/ZnO、Ag/C、Ag/Ni等) 仍存在诸多问题。因此,开发新型环保高性能电触头增强相材料是低压开关用电触头发展的迫切需求和必然趋势。近年来,MAX相作为一种新型层状陶瓷材料,兼具金属的导电、导热、易加工和陶瓷的耐高温、耐腐蚀、稳定性好等双重特性,完全契合电触头增强相材料的性能要求,在银基复合电触头中展示出较强的开发和应用潜力。
在已报道的MAX相家族中,Ti2SnC的导电性最为优异,增强银基复合材料后对其在服役过程中保持低接触电阻和温升十分有利。因此,本工作选择Ti2SnC作为Ag基增强相材料,研究制备工艺对复合材料结构和性能的影响。首先,本工作基于粉末冶金工艺在不同烧结温度下制备了Ag/10%Ti2SnC(质量分数)(Ag/10TSC) 复合块体材料;其次,采用XRD、SEM、EDS等手段对比了不同温度下复合材料物相、微结构和元素扩散情况;最后,结合硬度、拉伸强度、断面微结构及元素组成结果分析了温度诱导下Ti2SnC与Ag基体之间物相转变和界面扩散行为对复合材料力学性能的影响机制。结果表明,在相对较低温范围(200~750 ℃),Ti2SnC保持结构完整,仅与Ag基体产生微弱界面扩散,二者物理结合使Ag/10TSC复合材料具有较高的初始硬度和导电性。在升高制备温度 (800~900 ℃) 的诱导下,更多的Sn从Ti2SnC中逸出并向Ag基中持续扩散,导致Ti2SnC结构逐渐解离并为闭气孔中氧气向其内部渗透提供了通道,由此Ti2SnC表面生成少量氧化物。Ag-Sn相互扩散增强了Ti2SnC与Ag基体的界面结合,显著提高了复合材料的拉伸强度,但降低了导电性。在950 ℃下,持续结构解离、氧化的Ti2SnC产生团聚小颗粒,导致块体材料严重变形和性能退化。本工作厘清了常压制备条件下Ti2SnC增强相自身结构和成分的演变行为及其与Ag/Ti2SnC复合材料界面结构和性能之间的内在关系,为未来Ag/MAX电触头材料的实际应用提供了理论依据,并对推动低压开关用Ag基电触头材料环保化进程具有重要指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁健翔
夏欣欣
张凯歌
丁宽宽
马成建
张培根
孙正明
关键词:  电接触  银基复合材料  MAX相  界面扩散  微观组织  性能    
Abstract: Ti2SnC-reinforcing Ag-based composites show potential in the electrical contacts for low-voltage switches field. In this study, Ag/10wt%Ti2SnC (Ag/10TSC) composites were prepared by powder metallurgy at different preparing temperatures. Phase transition, microstructure evolution, interface behavior of Ti2SnC with Ag were investigated. The results show that the Ti2SnC remains intact structure and has weak interface diffusion with Ag under low preparing temperature (200—750 ℃), and the physical bonding gives Ag/10TSC composite high hardness and good electrical conductivity. Induced by elevated temperature (800—900 ℃), more Sn escape from Ti2SnC and diffuse with Ag, and the gradually dissociated Ti2SnC provide a channel for the oxygen infiltration, resulting in a small amount of oxides surrounding Ti2SnC. The Ag-Sn interdiffusion enhances the interface bonding between Ti2SnC and Ag matrix, and the tensile strength of composites increase significantly at the expense of electrical conductivity. At 950 ℃, TiSnC with gradual structural dissociation and oxidation produce agglomerated small particles, which causes the severe deformation and performance degradation of composites. The research results provide a theoretical basis for the future practical application of Ag/MAX electrical contact materials.
Key words:  electrical contact    sliver matrix composite    MAX phase    interface diffusion    microstructure    properties
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TG148  
基金资助: 江苏省博士后科研资助计划项目(2020Z158); 安徽省自然科学基金资助项目(2008085QE195); 大学生创新创业训练计划项目(S202110360188)
引用本文:    
丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
DING Jianxiang, XIA Xinxin, ZHANG Kaige, DING Kuankuan, MA Chengjian, ZHANG Peigen, SUN Zhengming. Evolution of Phase, Microstructure and Physical Properties of Ti2SnC-reinforcing Ag-based Composite with Elevated Preparing Temperature. Materials Reports, 2023, 37(16): 22040006-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040006  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22040006
1 Cotterll F. Energy & society: the relation between energy, social change, and economic development, AuthorHouse, USA, 2009, pp.4.
2 Dias R A, Mattos C R, Balestieri J A P. Energy Policy, 2006, 34(9), 1026.
3 Novakovic B, Nasiri A, Rashid M H. Electric Renewable Energy Systems, 2015, 1, 1.
4 Blackburn J L, Domin T J. Protective relaying: principles and applications, CRC Press, USA, 2006, pp. 5.
5 Smeets R, Van der Sluis L, Kapetanovic M, et al. Switching in electrical transmission and distribution systems, John Wiley & Sons, UK, 2014, pp. 19.
6 Wang S B, Peng M J, Sun Y, et al. Materials Reports, 2020, 34(9), 9117 (in Chinese).
王塞北, 彭明军, 孙勇, 等.材料导报, 2020, 34(9), 9117.
7 Ding J X, Sun Z M, Zhang P G, et al. Materials Reports, 2018, 32(1), 58 (in Chinese).
丁健翔, 孙正明, 张培根, 等. 材料导报, 2018, 32(1), 58.
8 Ding J X, Huang P Y, Zha Y H, et al. Journal of Inorganic Materials, 2020, 35(6), 729.
9 Zhang M, Tian W B, Zhang P G, et al. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(7), 810.
10 Ding J X, Tian W B, Wang D D, et al. Journal of Alloys and Compounds, 2019, 785, 1086.
11 Ding J X, Tian W B, Wang D D, et al. Corrosion Science, 2019, 156, 147.
12 Ding K K, Zhang K G, Ding J X, et al. Ceramics International, 2022, 48(1), 190.
13 Ding J X, Tian W B, Zhang P G, et al. Journal of Advanced Ceramics, 2019, 8(1), 90.
14 Yong X, Wang X H, Zhou Z J, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(5), 1046.
15 Wang X H, Li G J, Zou J T, et al. Journal of Composite Materials, 2011, 45(12), 1285.
16 Wang X H, Yang H, Liang S H, et al. Rare Metal Materials and Engineering, 2015, 44(11), 2612.
17 Li Z G, Cao H X, Zhou X L, et al. Materials Research Express, 2018, 5(4), 046306.
18 Wang Z, Zhang X S, Jiang S, et al. Journal of Alloys and Compounds, 2020, 828, 154412.
19 Chen S Y, Wang J, Yuan Z, et al. Journal of Alloys and Compounds, 2021, 860, 158494.
20 Lv W Y, Zheng K Q, Zhang Z G. Materials and Corrosion, 2018, 69(12), 1847.
21 Yang Y P, Ping Y J, Gong Y N, et al. Progress in Natural Science: Materials International, 2019, 29(4), 384.
22 Ding J X, Tian W B, Zhang P G, et al. Journal of Alloys and Compounds, 2018, 740, 669.
23 Sun Z M. International Materials Reviews, 2011, 56(3), 143.
24 Dlapka M, Danninger H, Gierl C, et al. Metal Powder Report, 2010, 65(2), 30.
25 Vincent C, Silvain J F, Heintz J M, et al. Journal of Physics and Chemistry of Solids, 2012, 73(3), 499.
26 He D, Liu F M, Guan S X, et al. Ceramics International, 2021, 47(14), 19989.
27 Masumura T, Tsuchiyama T. ISIJ International, 2021, 61(2), 617.
28 Guedes D, Malheiros L C, Oudriss A, et al. Acta Materialia, 2020, 186, 133.
29 Hwang J K. Materials Science and Engineering A, 2020, 772, 138709.
30 Zhou Y C, Dong H Y, Wang X H. Oxidation of Metals, 2004, 61(5), 365.
31 Wu H J, Zhu J L, Liu L, et al. Nanoscale, 2021, 13(15), 7355.
32 Yu W, Zhao H, Huang Z, et al. Materials Characterization, 2017, 127, 53.
33 Chen P G, Shen Q, Luo G Q, et al. Surface and Coatings Technology, 2016, 288, 8.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[5] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[6] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[7] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[8] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[9] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[10] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[11] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[12] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[13] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[14] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[15] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed