Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21010179-6    https://doi.org/10.11896/cldb.21010179
  金属与金属基复合材料 |
Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响
赵光伟1,2,*, 李达2, 陈健2, 方东1,2, 黄才华1,2, 石增敏2, 叶永盛1,2
1 三峡大学石墨增材制造技术与装备湖北省工程研究中心,湖北 宜昌 443002
2 三峡大学机械与动力学院,湖北 宜昌 443002
Effect of Hf Content on the Microstructure and Superelasticity of Ti49-XNi44Cu6Y1HfX Shape Memory Alloys
ZHAO Guangwei1,2,*, LI Da2, CHEN Jian2, FAND Dong1,2, HUANG Caihua1,2, SHI Zengmin2, YE Yongsheng1,2
1 Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei, China
2 College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 5476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti-Ni-Cu基形状记忆合金具有相变滞后小、可回复应变大、热稳定性好等优良性能。本工作采用非自耗真空电弧熔炼制备了Ti49-XNi44Cu6Y1HfX(X=0,2,6,10)形状记忆合金,并研究了Hf含量对其组织、相变行为与超弹性等的影响。结果表明,合金在室温下的主要组织为B2奥氏体与少量化合物相,加载与卸载过程中发生了B2$\rightleftharpoons$B19'马氏体相变。随Hf含量增加,Ti49-XNi44Cu6Y1HfX合金的马氏体相变温度降低,合金的压缩强度和断裂应变均有所降低,应力诱发马氏体的临界应力增加。在压缩应变为3%~11%的应力递增压缩循环过程中,合金出现加工硬化现象,并且可回复应力随着预应力的增加而增加。Hf含量为10%的合金在压缩应变为11%时具有最大的可回复应变7.9%,其中超弹性应变为5.2%。在压缩应变固定为7%的循环压缩过程中,10%Hf的样品循环稳定性较好,可以完全回复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵光伟
李达
陈健
方东
黄才华
石增敏
叶永盛
关键词:  形状记忆合金  Ti-Ni-Cu-Y-Hf合金  马氏体相变  超弹性    
Abstract: Ti-Ni-Cu based shape memory alloy has excellent properties such as small phase transformation hysteresis, large recoverable strain and good thermal stability. The purpose of this work is to systematically investigate the effect of substituting Hf for Ti on the microstructure, phase transformation and superelasticity of Ti49-XNi44Cu6Y1HfX (X=0, 2, 6, 10) alloys. The results show that the main microstructure of the alloy at room temperature is B2 austenite and a small amount of compound phase. And one-step martensitic transformation of B2$\rightleftharpoons$B19' occurs during the loading and unloading processes. With the increase of Hf content, the martensitic transformation temperature decreases, the compressive strength and fracture strain of the alloy decrease, and the critical stress of stress-induced martensite increases. In the cycle compression tests with an increased compressive strain of 3%—11%, the alloy exhibits work hardening phenomenon, and the recoverable stress increases with the increase of prestress. The sample of 10%Hf has the largest recoverable strain of 7.9% when the compressive strain is 11%, and the superelasti-city strain is 5.2%.In the cycle compression tests with a constant compressive strain of 7%, the sample of 10%Hf has good cyclic stability and can be completely recovered.
Key words:  shape memory alloy    Ti-Ni-Cu-Y-Hf alloy    martensitic transformation    superelasticity
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TG146.2+3  
基金资助: 国家自然科学青年基金(51604162);湖北省教育厅科研计划项目(B2020024); 石墨增材制造技术与装备湖北省工程研究中心开放基金(HRCGAM202104)
通讯作者:  *赵光伟,三峡大学机械与动力学院副教授,博士,硕士研究生导师。2005年学士毕业于燕山大学,分别于2007年和2011年硕士、博士毕业于哈尔滨工业大学。主要从事多元多相铝、钛合金、多组元形状记忆合金的制备与表征方面的研究。发表论文30余篇。zgwhit@126.com   
引用本文:    
赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
ZHAO Guangwei, LI Da, CHEN Jian, FAND Dong, HUANG Caihua, SHI Zengmin, YE Yongsheng. Effect of Hf Content on the Microstructure and Superelasticity of Ti49-XNi44Cu6Y1HfX Shape Memory Alloys. Materials Reports, 2023, 37(9): 21010179-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010179  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21010179
1 Tong Y X, Shuitcev A, Zheng Y F. Advanced Engineering Materials, 2020, 22, 1900496.
2 Hao Y S, Ji Y C, Zhang Z, et al. Scripta Materialia, 2019, 168, 71.
3 Gargarella P, Pauly S, Song K K, et al. Acta Materialia, 2013, 61, 151.
4 Nam T H, Saburi T, Shimizu K. Materials Transactions, 1990, 31, 959.
5 Li J, Yi X Y, Sun K S, et al. Journal of Alloys and Compounds, 2018, 747, 348.
6 Yamamoto M, Kuroda T, Yoneyama T, et al. Journal of Materials Science, 2002, 13, 855.
7 Terayama A, Kyogoku H. Materials Science and Engineering:A, 2010, 527, 5484.
8 Sun K S, Yi X Y, Sun B, et al. Journal of Alloys and Compounds, 2019, 772, 603.
9 Meng X L, Li H, Cai W, et al. Scripta Materialia, 2015, 103, 30.
10 Yi X Y, Wang H Z, Gao W H, et al. Journal of Alloys and Compounds, 2019, 802, 181.
11 Tong Y X, Gu H L, James R D, et al. Journal of Alloys and Compounds, 2019, 782, 343.
12 Wang G C, Hu K P, Tong Y X, et al. Intermetallics, 2016, 72, 30.
13 Nespoli A, Villa E, Passaretti F. Journal of Alloys and Compounds, 2019, 779, 30.
14 Zhao G W, Chen J, Ding C. Vacuum, 2020, 177, 109381
15 Cho G B, Kim T Y, Yu C A, et al. Journal of Alloys and Compounds, 2008, 449, 129.
16 Zhao G W, Chen J, Fang D, et al. Journal of Materials Engineering and Performance, 2020, 30, 617.
17 Wang Q Y, Zheng Y F, Liu Y, et al. Materials Letters, 2011, 65, 74.
18 Jang J Y, Chun S J, Choi E, et al. Materials Research Bulletin, 2012, 47, 2939.
19 Chen H, Xiao F, Liang X, et al. Acta Materialia, 2018, 158, 330.
20 Yi X Y, Gao W H, Meng X L, et al. Journal of Alloys and Compounds, 2017, 705, 98.
21 Yi X Y, Meng X L, Cai W, et al. Scripta Materialia, 2018, 153, 90.
22 Li S H, Study on martensitic transformation and functional behavior of Ti-Zr-Hf-Ni-Cu(Co) high-entropy shape memory alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
李少辉. Ti-Zr-Hf-Ni-Cu(Co)高熵形状记忆合金马氏体相变及功能行为研究. 博士学位论文, 北京科技大学, 2021.
23 Hua P, Chu K J, Ren F Z, Sun Q P. Acta Materialia, 2020, 185, 507.
[1] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[2] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[3] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[4] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[5] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[6] 刘兵飞, 董少哲, 周蕊, 杜春志. SMA损伤对航空发动机变形齿单齿力学性能的影响[J]. 材料导报, 2021, 35(16): 16070-16075.
[7] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[8] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[9] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[10] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[11] 刘博, 王社良, 何露, 李昊, 杨涛, 李彬彬. NiTi形状记忆合金丝的约束回复应力输出特性及本构模型[J]. 材料导报, 2020, 34(10): 10082-10087.
[12] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[13] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[14] 毛虎, 杨宏亮, 史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed