Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21050208-6    https://doi.org/10.11896/cldb.21050208
  无机非金属及其复合材料 |
LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料
虞亚霖1, 莫岩1,2, 陈永1,2,*, 李德1,*
1 海南大学,海南省硅锆钛综合开发与利用重点实验室,南海海洋资源利用国家重点实验室,海口 570228
2 佛山科学技术学院材料科学与氢能学院,广东 佛山 528000
Preparation of Single Crystal LiNi0.75Co0.10Mn0.15O2 Cathode Material by Molten Salt Method
YU Yalin1, MO Yan1,2, CHEN Yong1,2,*, LI De1,*
1 Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
2 School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, Guangdong, China
下载:  全 文 ( PDF ) ( 10772KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,新型正极材料的研究主要集中于提高材料的能量密度和安全性等。其中,单晶型镍钴锰三元材料具有耐高压、高热力学稳定性和高循环稳定性等优异的综合性能,是极具发展前景的正极材料之一。采用LiOH作为熔盐、添加LiNO3助熔剂降低熔点,烧结制备单晶LiNi0.75Co0.10Mn0.15O2材料。结果表明,当烧结温度为860 ℃、前驱体与混合锂盐的物质的量比为1:2时,所合成的单晶正极材料的Li+/Ni2+混排率较低,晶体颗粒粒径为1.5~2.5 μm。该材料具有良好的循环稳定性,首圈放电容量为172.3 mAh/g,在常温、2.8~4.4 V内,以1C倍率循环100次后,其容量保持率可达86.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
虞亚霖
莫岩
陈永
李德
关键词:  单晶  熔盐法  LiNi0.75Co0.10Mn0.15O2  正极材料    
Abstract: At present, the development of new cathode materials is mainly devoted to improving their energy density and safety. The single crystal nickel-cobalt-manganese ternary material has become one of the most promising cathode materials, due to its unique properties such as high safety, good thermodynamic and cycle stability. In this paper, single crystal LiNi0.75Co0.10Mn0.15O2 materials were synthesized via LiNO3-LiOH molten-salt assisted sintering, in which the LiOH was used as molten salt and LiNO3 was used as cosolvent to reduce melting temperature. Lower cation mixing of Li+/Ni2+ and homogeneous particle with the size of 1.5—2.5 μm were simultaneously obtained by sintering the mixture at 860 ℃ with the molar ratio of precursor to lithium salt of 1:2. The optimized sample yields high initial capacity of 172.3 mAh/g, and good cycle stability with capacity retention of 86.3% after 100 cycles (2.8—4.4 V, 1C) at room temperature.
Key words:  single crystal    molten salt method    LiNi0.75Co0.10Mn0.15O2    cathode material
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TM912.9  
基金资助: 海南省重点研发项目(ZDYF2020028);国家自然科学基金(52062012)
通讯作者:  * 陈永,佛山科学技术学院教授,博士研究生导师。2006年在中国科学院金属研究所获得博士学位。曾在日本国立产业技术综合研究所和美国中佛罗里达大学从事锂离子电池材料研究。研究方向主要集中在储能材料与技术,致力于碳材料、超级电容器和锂离子电池研究及器件开发,发表SCI论文100余篇。ychen2002@163.com
李德,海南大学教授,2010年获得南京大学博士学位,2010年11月至2015年3月在日本国立产业技术综合研究所进行博士后研究。长期从事锂离子电池电极材料和新型电化学效应研究,以第一作者及通信作者在国内外学术期刊上发表20余篇论文。lidenju@sina.com   
作者简介:  虞亚霖,2019年毕业于海南大学,取得学士学位。目前在海南大学材料科学与工程学院从事新型储能材料的研究。
引用本文:    
虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
YU Yalin, MO Yan, CHEN Yong, LI De. Preparation of Single Crystal LiNi0.75Co0.10Mn0.15O2 Cathode Material by Molten Salt Method. Materials Reports, 2023, 37(4): 21050208-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050208  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21050208
1 Li Y, Zhu J, Deng S, et al. Journal of Alloys and Compounds, 2019, 798, 93.
2 Mo Y, Guo L J, Jin H, et al. Journal of Power Sources, 2019, 448, 227439.
3 Dong M, Wang Z, Li H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10199.
4 Ding Y, Mu D, Wu B, et al. Ceramics International, 2020, 46(7), 9436.
5 Zheng S, Hong C, Guan X, et al. Journal of Power Sources, 2019, 412, 336.
6 Luo Z, Liu L, Ning J, et al. Angewandte Chemie, 2018, 130(57), 9443.
7 Qu Y, Mo Y, Jia X, et al. Journal of Alloys and Compounds, 2019, 788, 810.
8 Watanabe S, Kinoshita M, Hosokawa T, et al. Journal of Power Sources, 2014, 260(15), 50.
9 Qi L, Xin S, Dan L, et al. Nature Energy, 2018, 3, 936.
10 Kim J, Lee H, Cha H, et al. Advanced Energy Materials, 2018, 8(6), 1702028.
11 Kim Y. ACS Applied Materials & Interfaces, 2012, 4(5), 2329.
12 Wu K, Li Q, Dang R, et al. Nano Research, 2019, 12(10), 2460.
13 Li X Q, Xiong X H, Wang Z X, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(12), 4023.
14 Zhao X, Reddy M V, Liu H, et al. RSC Advances, 2014, 4(47), 24538.
15 Jiang X Y, Chu S Y, Chen Y B, et al. Journal of Alloys and Compounds, 2017, 691, 206.
16 Satyanarayana M, James J, Varadaraju U V. Applied Surface Science, 2017, 418, 72.
17 Lacmann R, Herden A, Mayer C. Chemical Engineering & Technology, 2015, 22(4), 279.
18 Li L J, Li X H, Wang Z X, et al. Powder Technology, 2011, 206(3), 353.
19 Fu C C, Li G S, Luo D, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 15822.
20 Duan J G, Wu C, Cao Y B, et al. Journal of Alloys and Compounds, 2017, 695, 91.
21 Zhu J, Zheng J, Cao G, et al. Journal of Power Sources, 2020, 464, 228207.
22 Wang H, Qin X Y, Sun W, et al. Chinese Journal of Power Source, 2020, 44(11), 1573 (in Chinese).
王浩, 秦显营, 孙威, 等. 电源技术, 2020, 44(11), 1573.
23 Ohzuku T, Brodd R J. Journal of Power Sources, 2007, 174(2), 449.
24 Li X, Zhang K J, Wang S Y, et al. Sustainable Energy & Fuels, 2018, 2(8), 1772.
25 Yang Xinhe, Shen Lanyao, Wu Bin, et al. Journal of Alloys and Compounds, 2015, 639, 458.
[1] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[2] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[3] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[4] 赵国旗, 刘丽荣, 田宁, 田素贵, 方永锋, 闫化锦, 王光艳. 一种镍基单晶合金高温蠕变期间的变形特征及元素分布[J]. 材料导报, 2022, 36(4): 21080216-7.
[5] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[6] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[7] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[8] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[9] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[10] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[11] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[12] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[13] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[14] 何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
[15] 尹华伟, 胡传波, 姚鑫, 陈琪雅, 胡雷, 卢增辉. 二维平移法小尺寸KDP单晶生长溶液流动与传质模拟[J]. 材料导报, 2021, 35(12): 12032-12038.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed