Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 21080216-7    https://doi.org/10.11896/cldb.21080216
  金属与金属基复合材料 |
一种镍基单晶合金高温蠕变期间的变形特征及元素分布
赵国旗1,2, 刘丽荣1,*, 田宁2, 田素贵1, 方永锋2, 闫化锦2, 王光艳1,2
1 沈阳工业大学材料科学与工程学院,沈阳 110870
2 贵州工程应用技术学院机械工程学院,贵州 毕节 551700
Element Distribution and Deformation Characteristics of a Single-crystal Nickel-based Alloy During High-temperature Creep
ZHAO Guoqi1,2, LIU Lirong1,*, TIAN Ning2, TIAN Sugui1, FANG Yongfeng2, YAN Huajin2, WANG Guangyan1,2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, Guizhou, China
下载:  全 文 ( PDF ) ( 4322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对一种6%Re/5%Ru镍基单晶合金进行高温蠕变性能测试、组织形貌观察及三维原子探针成分分析,研究了合金高温蠕变前后的元素分布及蠕变过程中的变形特征。结果表明,完全热处理后Al和Ta元素主要分布在合金的γ'相中。合金在1 120 ℃/165 MPa条件下蠕变断裂后,元素在γ/γ'两相的分布发生改变,其中,Al、Ta、Cr和Co因为氧化作用导致在γ/γ'两相中的浓度均降低。此外,一部分Re、Ru、W和Mo原子富集于γ/γ'相过渡区域附近的γ基体一侧,可引起晶格畸变,增加位错运动的阻力,延缓位错剪切进入γ'相,是含Re/Ru合金具有较好高温蠕变抗力的原因之一。蠕变后期,切入相的位错可由{111}面交滑移至{100}面形成K-W锁,其保留的高数量K-W位错锁可抑制位错滑移和交滑移,是合金有较好蠕变抗力的原因之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵国旗
刘丽荣
田宁
田素贵
方永锋
闫化锦
王光艳
关键词:  镍基单晶合金  6%Re/5%Ru  原子探针  浓度分布  K-W锁    
Abstract: Through a high-temperature creep performance test, microstructure observation, and three-dimensional atom probe composition analysis of a 6%Re/5%Ru (mass fraction) single-crystal nickel-based alloy, the element distribution before and after the alloy creep under high temperatures and the deformation characteristics during creep were studied. The results showed that the Al and Ta elements were mainly distributed in γ' phase of the alloy after complete heat treatment. After creep fracture at 1 120 ℃/165 MPa, the distribution of elements in γ/γ' phase changed. Among them, the concentration of Al, Ta, Cr and Co in the γ/γ' two phases was reduced due to oxidation. In addition, some Re, Ru, W and Mo atoms were expelled from γ' and enriched on the side of the γ matrix near the γ/γ' phase transition region, which could cause the lattice distortion to increase the resistance of dislocations motion and delay the shearing of dislocations into the γ' phase. It was one of the reasons why Re/Ru alloys have better high temperature creep resistance. In the later creep stage, the dislocations of shearing into γ' phase may cross-slid from {111} to {100} planes to form the K-W dislocation locks, and the K-W dislocation locks with more amount may inhibit the sliding and cross-sliding of dislocations to improve the resistance of alloy, which was thought to be one of the reasons of the alloy having better creep resistance.
Key words:  single crystal nickel-based superalloy    6%Re/5%Ru    atom probe    concentration distribution    K-W lock
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TG115.9  
基金资助: 辽宁省自然科学基金面上项目(2020-Ms-212);贵州省科学技术基金项目(黔科合基础[2020]1Y198;黔科合支撑[2019]2870;黔科合基础[2018]1055);毕节市科学技术项目(毕科合字[2019]2);贵州省教育厅青年科技人才成长项目(黔教合KY字[2022]121;黔教合KY字[2020]145;黔教合KY字[2018]400;黔教合KY字[2019]156);毕节市联合基金项目(毕科联合字G[2019]9;毕科联合字G[2019]25);贵州省高等学校特色重点实验室(黔教合KY字[2019]053)
通讯作者:  zhaoguoqi1986@163.com   
作者简介:  赵国旗,沈阳工业大学材料科学与工程学院博士研究生。主要研究方向为镍基单晶高温合金的高温力学行为,已以第一作者身份发表SCI论文4篇。
刘丽荣,沈阳工业大学材料科学与工程学院教授、博士研究生导师。2004年博士毕业于中国科学院金属研究所材料学专业。研究方向为镍基单晶高温合金的组织与性能控制,主持国家自然科学基金青年项目、辽宁省自然科学基金面上项目等科研项目5项。获得中国航空学会科学技术二等奖一项,发表论文40余篇。
引用本文:    
赵国旗, 刘丽荣, 田宁, 田素贵, 方永锋, 闫化锦, 王光艳. 一种镍基单晶合金高温蠕变期间的变形特征及元素分布[J]. 材料导报, 2022, 36(4): 21080216-7.
ZHAO Guoqi, LIU Lirong, TIAN Ning, TIAN Sugui, FANG Yongfeng, YAN Huajin, WANG Guangyan. Element Distribution and Deformation Characteristics of a Single-crystal Nickel-based Alloy During High-temperature Creep. Materials Reports, 2022, 36(4): 21080216-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080216  或          http://www.mater-rep.com/CN/Y2022/V36/I4/21080216
1 Pollock T M, Tin S. Journal of Propulsion and Power, 2006, 22(2), 361.
2 Dong C L, Yu H C, Li Y. Materials & Design, 2015, 66, 284.
3 Van Sluytman J S, Pollock T M. Acta Materialia, 2012, 60, 1771.
4 Reed R C, Tao T, Warnken N. Acta Materialia, 2009, 57, 5898.
5 Wang Y J, Wang C Y. Materials Science & Engineering A, 2008, 490(1-2), 242.
6 Wang X G, Liu J L, Jin T, et al. Materials & Design, 2014, 63, 286.
7 Heckl A, Neumeier S, Cenanovic S, et al. Acta Materialia, 2011, 59, 6563.
8 Ma S, Carroll L, Pollock T M. Acta Materialia, 2007, 55, 5802.
9 Janotti A, Krémar M, Fu C L. Physical Review Letters, 2004, 92, 085901.
10 Jin T, Wang W Z, Sun X F, et al. Materials Science Forum, 2010, 638, 2257.
11 Tan X P, Liu J L, Jin T, et al. Materials Science & Engineering A, 2011, 528, 8381.
12 Reed R C, Yeh A C, Tin S, et al. Scripta Materialia, 2004, 51, 327.
13 Yeh A C, Tin S. Metallurgical & Materials Transactions A, 2006, 37, 2621.
14 Warren P J, Cerezo A, Smith G D W. Materials Science & Engineering A, 1998, 250(1), 88.
15 Mottura A, Warnken N, Miller M K, et al. Acta Materialia, 2010, 58(3), 931.
16 Blavette D, Caron P, Khan T. Scripta Metallurgica, 1986, 20(10), 1395.
17 Hobbs R A, Zhang L, Rae C M F, et al. Materials Science & Enginee-ring A, 2008, 489(1-2), 65.
18 Zhao G Q, Tian S G, Shu D L, et al. Materials Research Express, 2020, 7(6), 066507.
19 Miller M K, Forbes R G. Atom probe tomography: the local electrode atom probe, Springer Press, UK, 2014.
20 Reed R C. The superalloys: fundamentals and applications, Cambridge University Press, UK, 2008.
21 Guo X P, Fu H Z, Sun J H. Acta Metallurgica Sinica, 1994, 30(7), 321 (in Chinese).
郭喜平, 傅恒志, 孙家华. 金属学报, 1994, 30(7), 321.
22 Shu D L, Tian S G, Liu L R, et al. Materials Characterization, 2018, 141, 433.
23 Wen M R, Wang C Y. Chinese Physics B, 2017, 26(9), 093106.
24 Pei H Q, Wen Z X, Yue Z F, et al. Journal of Alloys and Compounds, 2017, 704, 218.
25 Zhang J S. High temperature deformation and fracture of materials, Science Press, China, 2007(in Chinese).
张俊善. 材料的高温变形与断裂, 科学出版社, 2007.
26 Larson D J, Wissman B D, Martens R L, et al. Microscopy & Microana-lysis, 2001, 7(1), 24.
27 Wanderka N, Glatzel U. Materials Science & Engineering A, 1995, 203, 69.
28 Tian S G, Zhou H H, Zang J H, et al. Materials Science & Engineering A, 2000, 279, 160.
29 Fleischer R L. Acta Metallurgica, 1963, 11, 203.
30 Tian S G, Wu J, Shu D L, et al. Materials Science & Engineering A, 2014, 616, 260.
31 Yu X X, Wang C Y, Zhang X N, et al. Journal of Alloys and Compounds, 2014, 582, 299.
[1] 李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
[2] 韩永强, 王宇斌, 陈旋, 吴晓春. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140.
[3] 左鹏鹏,何雪松,吴晓春,曾艳,. 三维原子探针表征淬回火Cr-Mo-V-Ni中合金钢的元素分布*[J]. 材料导报编辑部, 2017, 31(22): 85-89.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed