Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 560-565    
  高分子与聚合物基复合材料 |
三氧化二锑对尼龙阻燃性能的影响研究发展动态
孙吉, 何文涛
黄冈师范学院化学化工学院,黄冈 438000
Research Progress of the Influence of Antimony Troixide on the Flame Retardant Properties of Nylon
SUN Ji, HE Wentao
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
下载:  全 文 ( PDF ) ( 3959KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,尼龙(PA)广泛用于人们的日常生活,但随着电子、航天及其他特殊行业的快速发展,对PA的使用环境的要求也越来越严,因此,对PA性能也提出了更高的要求。需要在保持PA较高的力学性能状态下,进一步提高其阻燃性能。目前,PA的阻燃性能主要通过两个方面实现:(1)使用添加型阻燃剂;(2)使用反应型阻燃剂。在提高PA阻燃性的众多添加型阻燃剂(如:卤系阻燃剂、氮系阻燃剂、磷系阻燃剂、无机阻燃剂等)中,卤系阻燃剂污染较大、毒性较高,金属氢氧化物的用量大、费用高,且会造成尼龙的一些物理性能损失,氮磷系阻燃剂与PA之间存在相容性差等缺点。因此,需要开发一些污染小、毒性低的阻燃剂。
随着人类对环保问题的重视,无机阻燃剂由于具有污染小、毒性低且抑烟效果好等优势而被广泛应用于高分子加工过程中以提高高分子材料的阻燃性能。在无机阻燃剂中目前使用量最大的是三氧化二锑(Sb2O3),由于其特殊的结构和组成,可单独或作为协效剂添加到其他阻燃聚合物材料中,广泛用于塑料制品、橡胶等高分子材料特别是PA的阻燃。为进一步提高PA材料的阻燃性能,研究者采用不同方法制备Sb2O3并将其引入PA体系中, 制备了不同的阻燃PA/Sb2O3 复合材料并探究其阻燃性能。
本文详细介绍了Sb2O3的结构及其几种常用的制备方法,包括模板法、化学还原法、水热法和沉淀法等,在此基础上,重点阐述了Sb2O3作为阻燃添加剂在PA中的应用。根据近年来国内外Sb2O3阻燃剂对尼龙6(PA6)阻燃改性的研究现状,指出当前Sb2O3在PA6中的发展趋势主要包括:(1)通过细化粒径来减小Sb2O3用量;(2)通过表面改性改善Sb2O3与聚合物基体的相容性;(3)与无卤阻燃剂复配;(4)与其他无机阻燃剂杂化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙吉
何文涛
关键词:  三氧化二锑  阻燃  尼龙    
Abstract: In recent year, nylon (PA) is widely used in people's daily lives. With the rapid development of electronics, aerospace and other special industries, the usage environment of PA is becoming stricter and stricter. Therefore, the overall performances specially the flame retardant performance of PA need to be improved and how to improve the flame retardancy of PA6 is attracting more and more attention. It is important that the flame retardancy should be improved without loss in mechanical performance. At present, the flame retardancy of PA is mainly be achieved by incorporating two types of flame retardants: (Ⅰ) additive flame retardants; (Ⅱ) reactive flame retardants. Among the various additive flame retardants for PA, such as: halogen-containing flame retardants, phosphorus-containing flame retardants, nitrogen-containing flame retardants and inorganic flame retardants, etc., the halogen-containing flame retardants show high flame retardancy, but bring pollution to the environment. The dosage of metal hydroxide is generally high and will cause loss in mechanical properties. For phosphorus-containing and nitrogen-containing flame retardants, the complex preparation process and the poor compatibility with polymer matrix have to be considered. Therefore, it is necessary to develop novel flame retardants with high efficiency, little pollution and low toxicity.
With the increasing attention to environmental protection, inorganic flame retardants are widely used to improve the flame retardancy of polymer materials due to their low pollution, low toxicity, good smoke suppression effect. As one of the most important and abundant inorganic fillers, antimony trioxide (Sb2O3) has been employed as flame retardants for polymer materials due to their special structure and composition. Besides, Sb2O3 can be incorporated into polymer materials together with other flame retardant as a synergist, widely used in plastic products, rubber and other polymer materials specially PA materials. In order to further improve the flame retardancy of PA materials, various Sb2O3 have been prepared by different methods and introduced into the PA system. The flame retardant mechanisms of the prepared PA/Sb2O3 composites are also explored.
In this paper, the structure of Sb2O3 is firstly introduced. Several common preparation methods, including template method, chemical reduction method, hydrothermal method and precipitation method, are listed and compared. On this basis, the application of Sb2O3 as flame retardant additives in PA is emphatically described. According to the recent studies on flame retardant PA6/Sb2O3 composites, it is pointed out that the deve-lopment trend of Sb2O3 in PA6 mainly includes: (Ⅰ) reducing the amount of Sb2O3 by refining the particle size; (Ⅱ) improving the compatibility of Sb2O3 with polymer matrix through surface modification; (Ⅲ) compounding with halogen-free flame retardant; (Ⅳ) hybridization with other inorganic flame retardants.
Key words:  antimony troixide    flame retardancy    polyamide
                    发布日期:  2021-07-16
ZTFLH:  TQ314  
通讯作者:  wentaohe@aliyun.com   
作者简介:  孙吉,2020年6月毕业于黄冈师范学院,获得理学学士学位。现在何文涛教授的指导下进行研究,目前主要研究领域为阻燃聚合物纳米材料。何文涛,黄冈师范学院教授。2010年12月在武汉大学高分子化学与物理专业取得博士学位,2011—2018年在国家复合改性聚合物材料工程技术研究中心从事聚合物纳米复合材料的研发工作,并于2015年被评为研究员。2018年1月-6月作为访问学者于澳大利亚南昆士南大学从事阻燃聚合物纳米复合材料研究。近年来,在阻燃聚合物纳米复合材料领域发表论文20余篇,包括Progress in Materials Science、Composites Communications、Polymer Degradation and Stability和Polymers等。
引用本文:    
孙吉, 何文涛. 三氧化二锑对尼龙阻燃性能的影响研究发展动态[J]. 材料导报, 2021, 35(Z1): 560-565.
SUN Ji, HE Wentao. Research Progress of the Influence of Antimony Troixide on the Flame Retardant Properties of Nylon. Materials Reports, 2021, 35(Z1): 560-565.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/560
1 周颖, 张道海, 秦舒浩. 材料导报:综述篇, 2019, 33(3),175.
2 安文, 马建中, 徐群娜. 材料导报, 2019, 33(S2), 604.
3 左晓玲, 张道海, 罗兴, 等. 现代化工, 2013(2), 33
4 张永, 周华龙, 王丰, 等. 上海塑料, 2015(1), 6.
5 吴朝亮, 刘海燕, 戴文利, 等. 广东化工, 2010, 37(3), 24.
6 Niu L, Xu J, Yang W, et al. Materials, 2018, 11(7), 1060.
7 Li Y, Lida L, Wang W, et al. Polymer, 2020, 190, 1.
8 张亨. 上海塑料, 2012(1), 6.
9 杜兆芳, 李继丰, 董丹丹. 材料科学与工艺, 2019, 27(2), 77.
10 潘峰, 张旺, 张荻. 材料导报:综述篇, 2015, 29(1), 22.
11 Zhang Z, Guo L, Wang W, et al. Journal of Materials Research, 2001, 16 (3), 803.
12 Ye C, Wang G, Kong M, et al.Journal of Nanomaterials, 2006,95670,1.
13 Ge S, Wang Q, Shao Q, et al.Applied Surface Science, 2011, 257(8), 3657
14 Chin H S, Cheong K Y, Razak K A, et al.Journal of Nanoparticle Research, 2011, 13(7), 2807.
15 朱广军, 李勤华, 张琳, 等. 化学反应工程与工艺, 2004(4), 363.
16 Hu Y, Zhang H, Yang H, et al.Journal of Alloys and Compounds, 2007, 428(1), 327.
17 Chen X, Wang X, An C, et al.Materials Research Bulletin, 2005, 40(3), 469.
18 Chen X Y, Huh H S, Lee S W, et al.Journal of Solid State Chemistry, 2008, 181(9), 2127.
19 Jha A K, Prasad K, Prasad K, et al.Biochemical Engineering Journal, 2009, 43(3), 303.
20 杨学林, 丘克强, 张露露, 等. 现代化工, 2004(2), 44.
21 司明明, 郝建薇, 徐利时, 等. 中国塑料, 2013, 27(8), 1.
22 冯洪福, 聂红云, 张瑜, 等. 现代机械, 2010(6), 79.
23 单辰杰, 左晓玲, 江来, 等. 广州化工, 2014, 42(20), 61.
24 左晓玲, 张凯舟, 邵会菊, 等. 塑料工业, 2013, 41(9), 81.
25 左晓玲, 张凯舟, 邵会菊, 等. 塑料工业, 2013, 41(6), 103.
26 徐晓楠. 塑料, 2009, 38(6), 79.
27 孔文晓, 吴宏达, 杨昌云, 等. 塑料科技, 2015, 43(10), 104.
28 吴方娟, 方辉, 吕婉真. 中国塑料, 2016, 30(11), 53.
29 李明英, 樊张帆, 张瑜, 等. 塑料工业, 2008, 36(12), 42.
30 刘志文, 常晓文, 周军杰, 等. 塑料工业, 2016, 44(6), 5.
31 司明明, 丁率, 郝建薇, 等. 高分子学报, 2013(12), 1483.
32 Si M M, Feng J, Hao J W, et al. Polymer Degradation and Stability, 2014, 100, 70.
33 杨勇, 王奥兰, 毋伟, 等. 高校化学工程学报, 2014, 28(6), 1302.
34 杜兆芳, 李继丰, 李中波, 等. 材料科学与工程学报, 2019, 37(3), 405.
[1] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[2] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[3] 刘轶, 刘跃军, 李祥刚, 崔玲娜, 刘小超, 李樟华, 范淑红. 热拉伸对尼龙6薄膜微观结构与力学性能的影响[J]. 材料导报, 2021, 35(6): 6194-6199.
[4] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[5] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[6] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[7] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[8] 高芸, 向宇姝, 徐国敏, 龙丽娟, 秦舒浩, 于杰. 烷基次磷酸盐及其协效阻燃研究进展[J]. 材料导报, 2020, 34(19): 19190-19196.
[9] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[10] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[11] 安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(Z2): 604-608.
[12] 张万里, 郑刚, 孙斌, 陈卡凌, 沈翔. 乙烯-三氟氯乙烯共聚物的制备及其在电线电缆上的应用进展[J]. 材料导报, 2019, 33(Z2): 609-612.
[13] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[14] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[15] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed