Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 566-570    
  高分子与聚合物基复合材料 |
基于AIE特性的有机小分子和聚合物的应用进展
马思阳1,2, 张晓琳1,2, 宫蕾1,2, 詹世平1,2, 侯维敏1,2, 卢春兰1,2
1 大连大学环境与化学工程学院,大连 116622
2 辽宁省化工环保工程技术研究中心,大连 116622
Application Progress of Small Organic Molecules and Polymers Based on AIE Properties
MA Siyang1,2, ZHANG Xiaolin1,2, GONG Lei1,2, ZHAN Shiping1,2, HOU Weimin1,2, LU Chunlan1,2
1 College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
2 Chemical and Environmental Protection Engineering Research Technology Center, Dalian 116622,China
下载:  全 文 ( PDF ) ( 2950KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机发光材料的发展极大地影响了材料科学及其应用的进展。在所有发光体系中,聚集诱导发射(AIE)已成为不可缺少的主流效应,作为一种反荧光淬灭(ACQ)现象,AIE聚集态下的强发射有效地解决了荧光淬灭(ACQ)问题,从而拓宽了发光材料在多种领域的实际应用。AIE分子具有高度扭曲的结构和多样的性能,其分子结构设计和材料的制备过程不断得到优化,具有AIE效应的荧光团也在不断迭代更新。目前为止,研究者发现的AIE发光机理甚多,但有些AIE材料的内在发光机理还需继续探索和具体明确。此外,研究者们致力于发展高质量的新型AIEgens,完善功能性AIE聚合物,检测分析物的特异性识别等,均取得了较大进展,这对AIE材料的实际利用提供更多保障。近年来,AIE分子的新机械理解得到普遍认同,研究人员开发出更多新型结构的AIE化合物,经过巧妙设计成功地将AIE引入超分子领域,实现了高分子发光材料的功能化。目前,AIE分子已成功地用作化学/生物传感和成像的荧光探针以及有机发光二极管(OLED)的发光材料。
本文介绍了聚集诱导发射的研究进展,以及近年来基于AIE特性设计的荧光分子并对其结构设计思想进行描述,简单阐述了AIE材料在生物检测、医学治疗和光电领域等方面的前沿应用,为研究者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马思阳
张晓琳
宫蕾
詹世平
侯维敏
卢春兰
关键词:  聚集诱导发光(AIE)  四苯乙烯  聚合物  近红外区  生物成像    
Abstract: The development of organic luminescent materials has greatly affected the progress of materials science and its application.Aggregation-induced emission (AIE) has become an indispensable mainstream effect in all luminescent systems. As an anti-ACQ phenomenon, strong emission in AIE aggregation state effectively solves the ACQ problem, thus widening the practical application of luminescent materials in various fields. AIE molecules have highly distorted structures and diverse properties. Their molecular structure design and material preparation process are continuously optimized, and fluorophores with AIE effect are also continuously updated iteratively. So far, researchers have found many luminescent mechanisms of AIE, but the intrinsic luminescent mechanisms of some AIE materials still need to be further explored and specified. In addition, researchers are committed to developing high-quality new AIEgens, improving functional AIE polymers, and detecting the specific recognition of analytes, etc. with great progress, which provides more guarantee for the practical use of AIE materials. In recent years, the new mechanical understanding of AIE molecules has been generally recognized. Researchers have developed more AIE compounds with new structures. AIE has been successfully introduced into the supramolecular field through clever design, realizing the functionalization of polymer luminescent materials. At present, AIE molecules have been successfully used as fluorescent probes for chemical/biological sensing and imaging and luminescent materials for organic light emitting diodes (OLED).
This paper introduces the research progress of aggregation-induced emission, as well as fluorescent molecules designed based on AIE characteristics in recent years and describes their structural design ideas. It also briefly expounds the frontier applications of AIE materials in the fields of biological detection, medical treatment, photoelectric and so on, providing reference for researchers.
Key words:  aggregation-induced emission (AIE)    tetraphenyl ethylene    polymer    near-infrared region    bioimaging
                    发布日期:  2021-07-16
ZTFLH:  O69  
基金资助: 辽宁省自然科学基金指导计划项目(201602036);国家自然科学基金项目(21102014)
通讯作者:  zhangxiaolin@dlu.edu.cn   
作者简介:  马思阳,2019年6月毕业于长春师范大学,获得理学学士学位。现为大连大学环境与化学工程学院硕士研究生,在张晓琳副教授的指导下进行研究。目前主要研究领域为功能高分子的发光材料。张晓琳,2009年毕业于大连理工大学,获得应用化学博士学位。20092011年于大连理工大学进行博士后研究工作。2011年至今为大连大学环境与化学工程学院副教授。目前主要研究领域为有机功能材料构建。在国外高水平期刊如Angew. Chem. Int. Ed、Inorg. Chem.、Organic Letters、Dalton Transaction、Adv. Funct. Mater.等发表SCI论文十余篇,获授权发明专利多项。
引用本文:    
马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
MA Siyang, ZHANG Xiaolin, GONG Lei, ZHAN Shiping, HOU Weimin, LU Chunlan. Application Progress of Small Organic Molecules and Polymers Based on AIE Properties. Materials Reports, 2021, 35(Z1): 566-570.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/566
1 Zhao Y D, Wang W G, Gui C, et al. Journal of Materials Chemistry, 2018, 6, 2873.
2 Wang D, Tang B Z. Accounts of Chemical Research, 2019, 52(9),2559.
3 Tajima K, Fukui N, Shinokubo H, et al. Organic Letters, 2019, 21(23),9516.
4 Cavell A C, Krasecki V K, Li G, et al. Chemical Science, 2020, 10(11),2647 .
5 Feng X, Xu Z, Hu Z, et al. Journal of Materials Chemistry C, 2019, 7(8),2283.
6 Xu Y X, Wang F, Chen X YG, et al. Journal of Physical Chemistry C, 2019, 123(48), 29379.
7 Zheng Z, Zhang T F, Liu H X,et al. Acs Nano, 2018, 12(8), 8145.
8 Sun H, Tang X X, Zhang R, et al. Dyes and Pigments, 2020, 174, 108051.
9 Hu R, Qin A J, Tang B Z, et al. Progress in Polymer Science, 2020, 100, 101176.
10 Li X , Li Z , Yang Y W . Advanced Materials, 2018, 30(20),1800177.
11 Wang H, Zhao E, Lam J W Y, et al. Materials Today, 2015, 18(7),365.
12 Zhan Y Y, Yang Z W, Tan J H, et al. Dyes and Pigments, 2020, 173, 107898.
13 Ma Y Q, Zhang Y Y, Kong L, et al. Molecules, 2018, 23(12),3255.
14 Yoo H J , Youn S W. Organic Letters, 2019, 21(9),3422.
15 Pan X, Jiang J M, Li J F, et al. Inorganic Chemistry, 2019, 58(19),12618.
16 Wang R J, Liang Y F, Liu G, et al. RSC Advances, 2020, 10(4),2170.
17 Lu Y S, Sun Q K, Zhang Z Z, et al. Dyes and Pigments, 2018, 153, 233.
18 Lin Q, Zhu X, Fu Y P, et al. Dyes and Pigments, 2015, 113, 748.
19 Kim M I, Park S Y, Park K S, et al. Sensors and Actuators B-Chemical, 2018, 262, 469.
20 Li X, Li Z, Yang Y W. Advanced Materials, 2018, 30(20),1800177.
21 Zhang C W, Ou B, Jiang S T, et al. Polymer Chemistry, 2018, 9(15),2021.
22 Wu B, Wang W, Wang J L, et al. Dyes and Pigments, 2018, 157, 290.
23 Wang D, Su H F, Kwok R T K, et al. Chemical Science, 2018, 9(15),3685.
24 Yu F Q, Jing X Y, Lin W Y. Analytical Chemistry, 2019, 91(23),15213.
25 Wang B W , Jiang K , Li J X , et al. Angewandte Chemie International Edition, 2020, 59(6), 2338.
26 Dong J Q, Li X, Zhang K, et al. Journal of the American Chemical Society, 2018, 140(11), 4035.
27 Feng X, Xu Z, Hu Z, et al. Journal of Materials Chemistry C, 2019, 7(8),2283.
28 Viraj G N, Sharanabasava D H, Avijit D, et al. Materials Chemistry Frontiers, 2018, 2, 2091.
29 Wang Q, Li C B, Chen Q Q,et al. Analytical Chemistry, 2019, 91(20),12611.
30 Liu J L, Zhuo Y, Chai Y Q, et al. Chemical communications, 2019, 55(67),9959.
31 Liu L J, Liu W, Jia J, et al. Chinese Journal of Polymer Science, 2019, 37(4),401.
32 Zhao Y D, Wang W G, Gui C, et al. Journal of Materials Chemistry C, 2018, 6(11),2873.
33 Zong L Y, Zhang H Q, Li Y Q, et al. ACS Nano, 2018, 12, 9532.
34 Wang Y L, Chen M, Alifu N, et al. ACS Nano, 2017, 11, 10452.
[1] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[2] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[3] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[4] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[5] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[6] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[7] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[8] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[9] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[10] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[11] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[12] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[13] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[14] 李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
[15] 张克松, 石伟, 刘赛, 杨昶, 周心宇. 联苯基交联聚异腈的亚硝酸根电化学响应行为[J]. 材料导报, 2021, 35(12): 12175-12180.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed