Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19190-19196    https://doi.org/10.11896/cldb.19050100
  高分子与聚合物基复合材料 |
烷基次磷酸盐及其协效阻燃研究进展
高芸1,2, 向宇姝1,2, 徐国敏2, 龙丽娟2, 秦舒浩2, 于杰1,2
1 贵州大学材料与冶金学院,贵阳 550025
2 国家复合改性聚合物材料工程技术研究中心,贵阳 550014
Research Advances on Alkyl Hypophosphite and Its Synergistic Flame
Retardant System
GAO Yun1,2, XIANG Yushu1,2, XU Guomin2, LONG Lijuan2, QIN Shuhao2, YU Jie1,2
1 College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
2 National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
下载:  全 文 ( PDF ) ( 3706KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 烷基次磷酸盐阻燃剂由于具有无卤高效、低烟低毒、热稳定性高等优点,备受阻燃材料研究者的关注与青睐。自进入人们的视野至今,多种烷基结构的次磷酸盐被研究者相继成功合成,并将其单独或与其他物质复配添加到聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚酰胺(PA)等聚合物材料中,以研究其阻燃效果及机理,取得了丰硕的研究成果。
因此,本文一方面阐释了烷基次磷酸盐阻燃剂烷基结构与阻燃机理之间的构效关系,同时讨论了金属离子种类对阻燃性能的影响。对比烷基结构发现,直链、支链的烷基次磷酸盐通过受热分解生成含磷小分子物质捕捉自由基,主要发挥气相阻燃的作用,而环烷基、芳基的烷基次磷酸盐则是促进基体生成更多的炭层从而有效增强凝聚相阻燃作用,其中二乙基次磷酸盐已经实现工业化生产,比环烷基、芳基次磷酸盐具有更广泛的应用。此外,通过比较几种常见金属离子烷基次磷酸盐可知,铝离子的阻燃效果最佳。另一方面,由于大多数烷基次磷酸盐对聚合物材料的力学性能有一定的负面影响,严重阻碍了其应用及发展。近年来大量研究者致力于高效烷基次磷酸盐复配体系的研究开发。
本文讨论了包括金属化合物、纳米粒子和扩链剂几类物质协效阻燃聚合物的研究现状及阻燃机理,其中烷基次磷酸盐-扩链剂复配体系阻燃时烷基次磷酸盐释放自由基在气相中发挥阻燃作用,而扩链剂可以使聚合物分子链段增长,链间产生交联作用,使得聚合物热稳定性能提高,成炭率及炭层致密性增加,固相阻燃作用增强,同时该复配体系还可提高材料的力学性能,获得阻燃性能与力学性能兼备的阻燃复合材料,在烷基次磷酸盐复配体系方面具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高芸
向宇姝
徐国敏
龙丽娟
秦舒浩
于杰
关键词:  阻燃  烷基次磷酸盐  协效  降解    
Abstract: Alkyl hypophosphite flame retardants have attracted the attention of researchers due to their high halogen-free efficiency, low smoke and toxicity, and high thermal stability. At present various alkyl hypophosphites have been successfully synthesized by researchers. The flame retar-dant was added to polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA) and other polymers alone or combined with other substances to study its flame retardant properties and mechanism, and has achieved fruitful research results.
Therefore, on the one hand, the structure-activity relationship between alkyl structure of alkyl hypophosphite and flame-retardant mechanism was explained, and the effects of metal ions on flame retardant properties were discussed. By comparison, alkyl hypophosphites with straight and branched chains capture free radicals and form phosphorus-containing small molecular substances during thermal decomposition, which mainly play the role of flame retardance in gas phase. While alkyl hypophosphites with cycloalkyl and aryl groups promote the formation of char layers in the matrix, thus effectively enhance the flame retardant effect in condensed phase. Among them, diethyl hypophosphite has been industrialized and more widely used than cycloalkyl and aryl groups hypophosphites. In addition, by comparing several common metal ions, flame retardant effect of aluminium alkyl hypophosphite is the best. On the other hand, most alkyl hypophosphites have a negative effect on the mechanical pro-perties of polymers, which seriously hampers their application and development. In recent years, a large number of researchers have devoted themselves to the research of high-efficiency alkyl hypophosphite complex system.
In this paper, the research status and flame retardant mechanism of several synergistic flameretardant system are discussed, including metal compounds, nanoparticles and chain extenders. For the alkyl hypophosphite-chain extender system, alkyl hypophosphite releases free radicals to play a flame retardant role in the gas phase. The chain extenders can increase the chain length of polymer molecules and produce cross-linking between chains, which can improve the thermal stability, increase the charring formation ability, and enhance flame retardant effect in the solid-phase. Moreover, the complex system can also improve the mechanical properties of materials and have broad application prospects.
Key words:  flame retardancy    alkyl hypophosphite    synergism    degradation
                    发布日期:  2020-11-05
ZTFLH:  TQ314.24  
基金资助: 贵州省科技计划项目黔科合基础([2018]1088);黔科合支撑([2019]2029);黔科合成果([2018]4210)
通讯作者:  410034801@qq.com   
作者简介:  高芸,2017年6月毕业于河南大学,获得工学学士学位。现为贵州大学材料与冶金学院研究生。目前主要研究领域为磷系阻燃剂的制备与应用。
徐国敏,国家复合改性聚合物材料工程技术研究中心研究员、硕士研究生导师。2004年本科毕业于西安理工大学材料学专业,2017年在中山大学高分子化学与物理专业取得博士学位。贵州省第九批优秀青年科技人才培养对象,贵州省省政府特殊津贴获得者。主要从事聚合物纳米复合材料、环境功能材料的研究,近年来发表学术论文40余篇,获贵州省科技进步三等奖2项。
引用本文:    
高芸, 向宇姝, 徐国敏, 龙丽娟, 秦舒浩, 于杰. 烷基次磷酸盐及其协效阻燃研究进展[J]. 材料导报, 2020, 34(19): 19190-19196.
GAO Yun, XIANG Yushu, XU Guomin, LONG Lijuan, QIN Shuhao, YU Jie. Research Advances on Alkyl Hypophosphite and Its Synergistic Flame
Retardant System. Materials Reports, 2020, 34(19): 19190-19196.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050100  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19190
1 Levchik S V, Weil E D. Polymer International,2005,54(1),11.
2 Hörold S, Schacker O, Wanzke W. German Patent, DE 10331889,2005.
3 Sandler S R. US Patent, US 4208321,1980.
4 Sandler S R. US Patent, US 4208322,1980.
5 Kleiner H, Budzinsky W. US Patent, US 5780534,1998.
6 Schlosser E, Nass B, Wanzke W. US Patent, US 6255371,2001.
7 Nass B, Wanzke W (to Clariant). US Patent, US 6207736,2001.
8 Sut A, Greiser S, Christian J, et al. Journal of Thermal Analysis and Calorimetry,2017,128(1),141.
9 Brehme S, Köppl T, Schartel B, et al. e-Polymers,2014,14(3),193.
10 Lorenzetti A, Besco S, Hrelja D, et al. Polymer Degradation and Stability,2013,98(11),2366.
11 Jimenez M, Duquesne S, Bourbigot S. Polymer Degradation and Stability,2013,98(7),1378.
12 Mariappan T, Wilkie C A. Fire and Materials,2014,38(5),588.
13 Braun U, Schartel B, Fichera M A, et al. Polymer Degradation & Stability,2007,92(8),1528.
14 Müller P, Schartel B. Journal of Applied Polymer Science,2016,133(24),43549.
15 Šehić A, Vasiljević J, Jordanov I, et al. Fibers and Polymers,2018,19(6),1194.
16 Sullalti S, Colonna M, Berti C, et al. Polymer Degradation & Stability,2012,97(4),566.
17 Butnaru I, Fernández R, María P, Czech-Polak J, et al. Polymers,2015,7(8),1541.
18 Brehme S, Schartel B, Goebbels J, et al. Polymer Degradation & Stability,2011,96(5),875.
19 Velencoso M M, Battig A, Markwart J C, et al. Angewandte Chemie International Edition,2018,57(33),10450.
20 Wilke A, Langfeld K, Ulmer B, et al. Industrial & Engineering Chemistry Research,2017,56(29),8251.
21 Wirasaputra A, Zheng L, Liu S, et al. Macromolecular Materials & Engineering,2016,301(5),614.
22 Seefeldt H, Duemichen E, Braun U.Polymer International,2013,62(11),1608.
23 Zhao B, Chen L, Long J W, et al. Industrial & Engineering Chemistry Research,2013,52(8),2875.
24 Zhao B, Chen L, Long J W, et al. Industrial & Engineering Chemistry Research,2013,52(48),17162.
25 Jin S, Xiang Y S, Yu J, et al. Plastics Industry,2017,45(1),9(in Chinese).
金松,向宇姝,于杰,等.塑料工业,2017,45(1),9.
26 He W T, Liao S T, Xiang Y S, et al. Polymers,2018,10(3),312.
27 Chen J, Zhang Y F, Du D J, et al. Advanced Materials Research,2014,887-888,378.
28 Liu J, Chen J, Liu X, et al. Fire and Materials,2014,38(2),155.
29 Hu Q, Peng P R, Zhou M, et al. Functional Materials,2017,48(5),5116(in Chinese).
胡权,彭攀瑞,周敏,等.功能材料,2017,48(5),5116.
30 Lin X B, Chen L, Long J W, et al. Chemical Engineering Journal,2018,334,1046.
31 Doğan M, Erdoğan S, Bayraml E. Journal of Thermal Analysis and Calorimetry,2013,112(2),871.
32 Salaün F, Lemort G, Butstraen C, et al. Polymers for Advanced Technologies,2017,28(12),1919.
33 Braun U, Bahr H, Sturm H, et al. Polymers for Advanced Technologies,2008,19(6),680.
34 Chen J. Synthesis and structure-activity relationship of a new alkyl phosphonate flame retardant. Ph.D. Thesis, Jianghan University, China,2013(in Chinese).
陈佳.新型烷基次膦酸盐阻燃剂的合成及构效关系研究.博士学位论文,江汉大学,2013.
35 Li Q, Li B, Zhang S, et al. Journal of Applied Polymer Science,2012,125(3),1782.
36 Holdsworth A F, Horrocks A R, Kandola B K, et al. Polymer Degradation and Stability,2014,110,290.
37 Gallo E, Schartel B, Braun U, et al. Polymers for Advanced Technologies,2011,22(12),2382.
38 Horrocks A R, Smart G, Hörold S, et al. Polymer Degradation & Stability,2014,104(1),95.
39 Gallo E, Braun U, Schartel B, et al. Polymer Degradation & Stability,2009,94(8),1245.
40 Duquesne S, Fontaine G, Cérin-Delaval O, et al. Thermochimica Acta,2013,551(1),175.
41 Wang Y, Zhang L, Yang Y, et al. Journal of Thermal Analysis & Calorimetry,2016,125(2),839.
42 Kaya H, KaynakC, Ozdemir E, et al. Journal of Analytical & Applied Pyrolysis,2016,118(Mar.),115.
43 Nazarenko O B, Amelkovich Y A, Ilyin A P, et al. Advanced Materials Research,2014,321(1),475.
44 Didane N, Stéphane Giraud, Devaux E, et al. Polymer Degradation and Stability,2012,97(12),2545.
45 Stenenson I, David L, Gauthier C, et al. Polymer,2001,42(22),9287.
46 Si M, Feng J, Hao J, et al. Polymer Degradation & Stability,2014,100(Feb.),70.
47 Kaynak C, Polat O. Journal of Fire Sciences,2015,33(2),87.
48 Cai J, Wirasaputra A, Zhu Y, et al. RSC Advances,2017,7(32),19593.
49 Akkapeddi M K, Gervasi J. Polym. Prep.,1988,29(1),567.
50 Xu M, Ma K, Jiang D, et al. Polymer,2018,146(20),63.
51 Zhou Z Y, Yin N W, Zhang Y, et al. Journal of Applied Polymer Science,2010,107(2),825.
52 Ma K, Li B, Xu M. Polymers for Advanced Technologies,2018,29,1068.
53 Han X, Zhao J, Liu S, et al. RSC Advances,2014,4(32),16551.
[1] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[2] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[3] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[4] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[5] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[6] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[7] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[8] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[9] 杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
[10] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[11] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[12] 安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(Z2): 604-608.
[13] 张万里, 郑刚, 孙斌, 陈卡凌, 沈翔. 乙烯-三氟氯乙烯共聚物的制备及其在电线电缆上的应用进展[J]. 材料导报, 2019, 33(Z2): 609-612.
[14] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[15] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed