Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080202-6    https://doi.org/10.11896/cldb.23080202
  无机非金属及其复合材料 |
ZrO2(AlN)/h-BN复合陶瓷性能研究及超重力凝固坩埚研制
赵建江1,2, 陈云敏1,2, 韦华1,2,*
1 浙江大学超重力研究中心,杭州 310058
2 浙江大学建筑工程学院,杭州 310058
Properties of ZrO2 (AlN)/h-BN Multiphase Ceramics and Crucible Preparation for Hypergravity Solidification
ZHAO Jianjiang1,2, CHEN Yunmin1,2, WEI Hua1,2,*
1 Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
2 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 6099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凝固是制备材料很基本的成型技术之一,但超重力凝固时,高转速产生的离心力克服合金熔体在坩埚孔隙处产生的表面张力,极易在超重力凝固过程中发生熔体渗漏或坩埚破碎,导致实验失败。本工作采用热压烧结工艺制备ZrO2/h-BN和AlN/h-BN复合陶瓷,测试其物理和力学性能,择优选材加工成坩埚。结果表明,AlN/h-BN的热导率优于ZrO2/h-BN,其高温压缩强度明显高于ZrO2/h-BN。基于超重力凝固时坩埚损伤的力学分析,选用低密度、高热导率、高压缩强度的AlN/h-BN制备坩埚,通过50炉超重力凝固实验,验证其性能满足超重力凝固的需要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵建江
陈云敏
韦华
关键词:  ZrO2/h-BN复合陶瓷  AlN/h-BN复合陶瓷  物理性能  压缩强度  坩埚研制    
Abstract: Solidification is one of the most basic forming technologies for preparingfor materials. However, during the hypergravity solidification, the centrifugal force during the high-speed rotation can be capable to overcome the surface tension generated by the alloy melt exiting the pores of the crucible, which will easily cause the melt to leak out of the crucible, finally leading to the failure of the experiment. In this study, ZrO2/h-BN and AlN/h-BN multiphase ceramics were prepared by hot-pressing sintering process and their physical and mechanical properties were tested. The results show that the thermal conductivity of AlN/h-BN are better than that of ZrO2/h-BN, and the high temperature compressive strength of AlN/h-BN is also significantly higher than that of ZrO2/h-BN. Based on the mechanical analysis of the damage of the crucible during the hypergravity solidification, AlN/h-BN with low density, high thermal conductivity and high compressive strength was selected to prepare for the crucible. The performance of the crucible was verified through 50 furnace experiments, confirming its suitability for hypergravity solidification.
Key words:  ZrO2/h-BN multiphase ceramics    AlN/h-BN multiphase ceramics    physical property    compressive strength    crucible preparation
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TQ174  
基金资助: 国家自然科学基金基础科学中心项目(51988101)
通讯作者:  *韦华,浙江大学建筑工程学院/超重力研究中心求是特聘教授、博士研究生导师。2004年中国科学院金属研究所材料学专业博士毕业。目前负责国家“十三五”重大科技基础设施“超重力离心模拟与实验装置”(简称CHIEF)——材料制备实验舱的总体设计和建造。主要从事超重力凝固、超重力材料制备与评价、铜合金及高温合金等方面的研究。发表论文100余篇,授权美国PCT国际专利1项,授权国内专利36项。国际会议学术报告7次,国内学术会议大会报告13次,省自然科学奖1项。huawei@zju.edu.cn   
作者简介:  赵建江,硕士,浙江大学建筑工程学院工程师。主要从事离心超重力环境下材料制备、离心超重力-温度耦合作用下材料动态失效及寿命评价方法,高性能铜合金、铝合金和高温合金等方面的研究,同时也致力于超重力凝固装置、高转速-高温耦合作用下部件级动态性能测试装置以及高转速-高温耦合环境下温度/应变在线监测技术的研发,旨在为材料制备和性能评价提供新的研究手段和方法。目前,参与国家“十三五”重大科技基础设施“超重力离心模拟与实验装置”(简称 CHIEF)——材料制备实验舱的总体设计和建造;参与国家自然科学基金基础科学中心“多相介质超重力相演变”中“超重力效应调控凝固组织的微观机制”子课题。申请美国PCT国际专利1项,申请国内专利9项,授权软件著作权1项。在Front. Mater.、《中国有色金属学报》等期刊发表SCI收录论文5篇。
引用本文:    
赵建江, 陈云敏, 韦华. ZrO2(AlN)/h-BN复合陶瓷性能研究及超重力凝固坩埚研制[J]. 材料导报, 2024, 38(21): 23080202-6.
ZHAO Jianjiang, CHEN Yunmin, WEI Hua. Properties of ZrO2 (AlN)/h-BN Multiphase Ceramics and Crucible Preparation for Hypergravity Solidification. Materials Reports, 2024, 38(21): 23080202-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080202  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080202
1 Greer A L, Bunn A M, Tronche A, et al. Acta Materialia, 2000, 48(11), 2823.
2 Zhang L, Chen L P, Zhou Q. Special-cast and Non-ferrous Alloys, 2018, 38(1), 78 (in Chinese).
张黎, 陈乐平, 周全. 特种铸造及有色合金, 2018, 38(1), 78.
3 Yan H, Wei H, Lin W A, et al. Journal of Chinese Electron Microscopy Society, 2022, 41(1), 1 (in Chinese).
闫昊, 韦华, 林伟岸, 等. 电子显微学报, 2022, 41(1), 1.
4 Chen W X, Yan H, Zhao J J, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(2), 425 (in Chinese).
陈玮炫, 闫昊, 赵建江, 等. 中国有色金属学报, 2022, 33(2), 425.
5 Studart A, Gonzenbach U, Tervoort E, et al.Journal of the American Ceramic Society, 2006, 89(6), 1771.
6 Cui S Q, Kan H M, Zhang N, et al. Jorunal of Functional Materials, 2020, 31(8), 08072 (in Chinese).
崔世强, 阚洪敏, 张宁, 等. 功能材料, 2020, 31(8), 08072.
7 Akhmadi E, Minoru A, Itsuro T. Materials Science Forum, 2010, 28, 2390.
8 Solozhenko V L, Kurakevych O O, Godec Y L. Advanced Materials, 2012, 24(12), 1540.
9 Cook M W, Bossom P K. International Journal of Refractory Metals and Hard Materials, 2000, 18(2-3), 147.
10 Haubner R, Wilhelm M, Weissenbacher R, et al.Structure and Bonding, 2008, 102, 1.
11 Liao R, Hu L M,,Chen Z Q, et al. Bulletin of the Chinese Ceramic So-ciety, 2006, 25(6), 76 (in Chinese).
廖荣, 胡利明, 程之强, 等. 硅酸盐通报, 2006, 25(6), 76.
12 Shen C Y, Tang H D, Qiu T, et al. Bulletin of the Chinese Ceramic Society, 2003, 22(2), 11 (in Chinese).
沈春英, 唐惠东, 丘泰, 等. 硅酸盐通报, 2003, 22(2), 11.
13 Li M J, She N Q, Chen F, et al. Advanced Materials Research, 2009, 66, 89.
14 Du Y H, Zhang B B, Wang S W, et al. Journal of Synthetic Crystals, 2016, 45(10), 2441.
15 Peng X, Zhu D G, Li Y X, et al. Journal of Inorganic Materials, 2016, 31(5), 535 (in Chinese).
彭旭, 朱德贵, 李杨绪, 等. 无机材料学报, 2016, 31(5), 535.
16 Qin M L, Du X L, Sun W, et al. Journal of the Chinese Ceramic Society, 2007, 35(3), 332 (in Chinese).
秦明礼, 杜学丽, 孙伟, 等. 硅酸盐学报, 2007, 35(3), 332.
17 Jiang T, Han M M, Fu J. Advanced Ceramics, 2021, 42(4), 225 (in Chinese).
江涛, 韩慢慢, 付甲. 现代技术陶瓷, 2021, 42(4), 225.
18 Tajika M, Matsubara H, Rafaniello W, et al.Journal of the American Ceramic Society, 1999, 82(6), 1573.
19 Liu C Y, Gao W, Yin H. Journal of Synthetic Crystals, 2022, 51(5), 781 (in Chinese).
刘彩云, 高伟, 殷红. 人工晶体学报, 2022, 51(5), 781.
20 Du Y H, Zhang B B, Wang S W, et al. Journal of Synthetic Crystals, 2016, 45(10), 2441 (in Chinese).
杜勇慧, 张波波, 王少伟, 等. 人工晶体学报, 2016, 45(10), 2441.
21 Zhang W J, Matsmoto S. Journal of Materials Research, 2000, 15(12), 2677.
[1] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[2] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[3] 徐卓越, 李辉, 张大旺, 孙雪梅, 赵柯飞, 王悦莹. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 21080117-14.
[4] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
[5] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[6] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[7] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[8] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[9] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[10] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[11] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
[12] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[13] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[14] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[15] 刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed