Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23050106-7    https://doi.org/10.11896/cldb.23050106
  金属与金属基复合材料 |
热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响
钟镇涛1, 洪森1, 邓妍1, 何泽乾1, 戴翠英1,2, 毛卫国1,2,*, 张有为3,*, 刘平桂3
1 湘潭大学材料科学与工程学院,湖南 湘潭 411105
2 长沙理工大学材料科学与工程学院,长沙 410014
3 中国航发北京航空材料研究院隐身与涂料所,北京 100095
Effect of Heat Treatment on the Microstructure and Mechanical Properties of FeSi Alloy Powder/Organosilicone Resin Microwave Absorbing Coatings
ZHONG Zhentao1, HONG Sen1, DENG Yan1, HE Zeqian1, DAI Cuiying1,2, MAO Weiguo1,2,*, ZHANG Youwei3,*, LIU Pinggui3
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China
3 Stealth & Coatings Institute, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 4532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在模拟服役温度条件下研究FeSi合金粉末/有机硅树脂吸波涂层微观形貌结构和力学性能的演变规律,对优化提升涂层性能和预测涂层服役寿命具有重要意义。本工作采用空气冷喷涂工艺制备了FeSi合金粉末/有机硅树脂吸波涂层,在400 ℃下分别对吸波涂层进行了10次、20次、30次、40次、50次的热循环处理,采用多种分析检测手段,研究了热处理对吸波涂层的微观形貌、物相组成、官能团、硬度及结合强度等方面的影响。结果表明,在400 ℃下吸波涂层质量损失仅0.12%,即涂层耐热性能良好,形貌结构比较稳定。随着热循环处理次数的增加,涂层表面显微硬度从室温的17.32HV1±0.57HV1增加到热处理循环10次后的34.01HV1±0.75HV1;当热循环次数继续增加时,涂层表面硬度趋于稳定。吸波涂层的结合强度则随着热循环次数的增加逐渐下降,热循环40次后,涂层结合强度下降至(1.95±0.60) MPa。涂层发生氧化交联反应以及涂层和基底热膨胀系数不匹配产生的热应力累积是影响热循环处理过程中吸波涂层力学性能的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟镇涛
洪森
邓妍
何泽乾
戴翠英
毛卫国
张有为
刘平桂
关键词:  FeSi合金粉末  吸波涂层  热膨胀系数  硬度  结合强度    
Abstract: It is important to study the microstructure and mechanical properties of FeSi alloy powder/silicone resinmicrowave absorbing coatings under the simulated service temperature conditions to optimize the coating performances and predict their service life. In this work, the microwave absorbing coatings were prepared by air-cooled spraying process, and they were subjected to 10, 20, 30, 40 and 50 thermal cycles at 400 ℃. The results of thermogravimetric analysis showed that the mass loss of microwave absorbing coating at 400 ℃ was only 0.12%. It meant that the coating had good heat resistance and stable morphological structure. With the increase of thermal cycles, the surface hardness of the coating increased from 17.32HV1±0.57HV1 at room temperature to 34.01HV1±0.75HV1 after 10 cycles. When thermal cycles continued to increase, the surface hardness of the coating stabilized. The bonding strength of the microwave absorbing coating gradually decreased with the increase in thermal cycles, decreasing to (1.95±0.60) MPa after 40 thermal cycles. The main reasons may be the oxidative cross-linking reaction of the coating and the accumulated thermal stress due to mismatch, which damaged the mechanical properties of the microwave absorbing coatings during thermal cycling.
Key words:  FeSi alloy powder    microwave absorbing coating    thermal expansion coefficients    hardness    adhesive strength
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TB332  
基金资助: 国家科技重大专项(J2019-Ⅵ-0017-0132;J2022-Ⅵ-0008-0039);国家重点研发计划(2021YFB3702304-4)
通讯作者:  * 毛卫国,2006年在湘潭大学获博士学位,现任长沙理工大学材料科学与工程学院院长,二级教授,博士研究生导师。长期从事面向国防、航天、航空和能源领域内先进防护涂层的材料制备、性能评价方法及产业应用。先后发表论文80余篇,SCI他引超过1 000次,已授权国家发明专利11项和国防发明专利5项。ssamao@126.com
张有为,博士。现为北京航空材料研究院隐身与涂料所研究员,主要研究方向为特种功能吸波材料,长期从事耐高温隐身材料制备与性能评价。ywzhang_pku@163.com.   
作者简介:  钟镇涛,现为湘潭大学材料科学与工程学院的硕士研究生,在毛卫国教授的指导下进行研究。目前主要从事高温隐身材料制备与性能评价。
引用本文:    
钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
ZHONG Zhentao, HONG Sen, DENG Yan, HE Zeqian, DAI Cuiying, MAO Weiguo, ZHANG Youwei, LIU Pinggui. Effect of Heat Treatment on the Microstructure and Mechanical Properties of FeSi Alloy Powder/Organosilicone Resin Microwave Absorbing Coatings. Materials Reports, 2024, 38(20): 23050106-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050106  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23050106
1 Ma C S, Yu W B, Ma G Z, et al. Critical Reviews in Solid State and Materials Sciences, 2023, 46(6), 726.
2 Chen Z W, Fan X M, Huang X X, et al. Advanced Ceramics, 2020, 41(Z1), 1(in Chinese).
陈政伟, 范晓孟, 黄小萧, 等. 现代技术陶瓷, 2020, 41(Z1), 1.
3 Jayalakshmi C, Inamdar A, Anand A, et al. Journal of Applied Polymer Science, 2019, 136(14), 47241.
4 Zheng W, Ye W X, Yang P A, et al. Molecules, 2022, 27(13), 4117.
5 Green M, Chen X B. Journal of Materiomics, 2019, 5(4), 503.
6 Kumar P, Narayan Maiti U, Sikdar A, et al. Polymer Reviews, 2019, 59(4), 687.
7 Wu C B, Li W, Gao D H, et al. Polymer-Plastics Technology and Engineering, 2009, 48(10), 1094.
8 Zhou Y Y, Zhou W C, Qing Y C, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 345.
9 Houbi A, Aldashevich Z A, Atassi Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 529, 167839.
10 Qing Y C, Zhou W C, Luo F, et al. Journal of Magnetism and Magnetic Materials, 2009, 321(1), 25.
11 Ren Z, Zhou W, Qing Y, et al. Journal of the European Ceramic Society, 2021, 41(15), 7560.
12 Huang Y, Wu D, Chen M, et al. Carbon, 2021, 177, 79.
13 Wang L, Long F L, Chen Y, et al. Journal of the American Ceramic Society, 2022, 105(6), 4171.
14 Xia C, Peng Y D, Yi Y, et al. Journal of Magnetism and Magnetic Materials, 2019, 474, 424.
15 Huang H H, Zhang R, Sun H B, et al. Journal of Alloys and Compounds, 2023, 947, 169460.
16 Xia C, Peng Y D, Yi X W, et al. Journal of Non-Crystalline Solids, 2021, 559, 120673.
17 Wu X J, Chen C G, Hao J J, et al. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1889.
18 Karamanolevski P, Bužarovska A, Bogoeva-Gaceva G. Silicon, 2018, 10, 2915.
19 Ling Y Q, Luo J M, Heng Z G, et al. Reactive and Functional Polymers, 2020, 157, 104742.
20 Yang Z Z, Feng L, Diao S, et al. Thermochimica Acta, 2011, 521(1-2), 170.
21 Chen L. Prepartion and properties of high temperature resistant silicone coating. Master’s Thesis, Beijing University of Chemical Technology, China, 2021 (in Chinese).
陈磊. 耐高温有机硅涂层的制备和性能研究. 硕士学位论文, 北京化工大学, 2021.
22 Hsiang H I, Wang S K, Chen C C. Journal of Magnetism and Magnetic Materials, 2020, 514, 167151.
23 Xu Y Y, Long J, Zhang R Z, et al. Polymer Degradation and Stability, 2020, 174, 109082.
24 Zhang W C, Camino G, Yang R J. Progress in Polymer Science, 2017, 67, 77.
25 Fan X H, Li F R, Yi J G, et al. China Synthetic Resin and Plastics, 2021, 38(6), 5(in Chinese).
范相虎, 李丰瑞, 易俊刚, 等. 合成树脂及塑料, 2021, 38(6), 5.
26 Sun C W, Wang D, Xu C H, et al. High Performance Polymers, 2022, 34(4), 474.
27 Lin T J, Sheu H H, Lee C Y, et al. Journal of Alloys and Compounds, 2021, 867, 159132.
28 Nová K, Novák P, Průša F, et al. Metals, 2018, 9(1), 20.
29 Priese C, Töpfer J. Alloys, 2022, 1(3), 288.
30 Xiong W J, Gao X, Gui D Y, et al. Polymer Engineering & Science, 2016, 56(10), 1118.
31 Yang X F, Chen Q, Bao H Y, et al. OSA Continuum, 2018, 1(2), 542.
32 Zhou Y Y, Zhou W C, Wang H Y, et al. Journal of Polymer Research, 2015, 22, 1.
33 Shen C W, Yang H, Sun Z C, et al. Journal of Plasticity Engineering, 2007(4), 101(in Chinese).
沈昌武, 杨合, 孙志超, 等. 塑性工程学报, 2007(4), 101.
34 Liu Y, Chen Z X, Qin Y S, et al. Journal of Electronic Materials, 2020, 49, 4379.
35 Zhang Y H, Xu J F, Feng Y B, et al. Advances in Polymer Technology, 2018, 37(8), 3262.
36 Wu C B, Jin Y H, Li W, et al. High Performance Polymers, 2010, 22(8), 959.
37 Sun J T, Huang Y D, Cao H L, et al. Journal of Aeronautical Materials, 2005(1), 25 (in Chinese).
孙举涛, 黄玉东, 曹海琳, 等. 航空材料学报, 2005(1), 25.
38 Liu H D, Cao X D, He W H, et al. Jorunal of Functional Materials, 2007(7), 1045(in Chinese).
刘海定, 曹旭东, 贺文海, 等. 功能材料, 2007 (7), 1045.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[3] 王涛, 陈冲, 张国赏, 魏世忠, 毛丰, 熊美. 铝钢双金属液固复合铸造研究现状[J]. 材料导报, 2024, 38(17): 22110329-8.
[4] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[5] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[6] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[7] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[8] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[9] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[10] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[11] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[12] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[13] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[14] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[15] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed