Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23050133-9    https://doi.org/10.11896/cldb.23050133
  无机非金属及其复合材料 |
CeMn复合氧化物的制备及氯苯催化氧化性能
罗宁1,†, 高凤雨1,†, 陈都1, 张辰骁1, 段二红2, 赵顺征1, 易红宏1, 唐晓龙1,*
1 北京科技大学能源与环境工程学院,北京 100083
2 河北科技大学环境科学与工程学院,石家庄 050018
Preparation of CeMn Composite Oxide and Catalytic Oxidation of Chlorobenzene
LUO Ning1,†, GAO Fengyu1,†, CHEN Du1, ZHANG Chenxiao1, DUAN Erhong2, ZHAO Shunzheng1, YI Honghong1, TANG Xiaolong1,*
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
下载:  全 文 ( PDF ) ( 9976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯苯作为一种含氯代苯环的物质,具有高生物毒性和化学稳定性,难以降解,亟需治理。在诸多治理技术中,催化氧化法因深度降解能力有较好的应用前景。本研究基于资源丰富的稀土金属氧化物CeO2,探究了不同制备方法以及不同过渡金属元素掺杂对催化氧化氯苯活性的影响,分析了催化剂的理化性能和反应路径。结果显示,与直接焙烧、乙酸+水热,尿素水解+水热等方法相比,NaOH沉淀+水热法合成的CeO2催化剂性能较好。通过掺杂不同元素(Mn、Fe、Co)发现,Ce-Mn催化剂的氯苯氧化活性的提升效果较为明显,于450 ℃、含H2O(5%(体积分数,下同))条件下取得95%的催化转化率。分析表明,Mn掺杂后催化剂表面酸性位点以及氧化还原位点显著增加,其中Brønsted/Lewis(B/L)酸比值由0.259升高至0.419,促进了更多的电子循环(Ce4+/Ce3+)以及氧物种迁移(Oα↔Oβ)产生。反应路径研究表明,氯苯分子首先吸附在催化剂表面的活性位点(酸位点或氧空位)上发生亲核取代反应,脱氯形成苯酚/苯醌等物质,在活性氧物种的作用下,逐渐开环氧化为乙酸盐等中间物种,最终转化为CO2、H2O和HCl等小分子的最终产物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗宁
高凤雨
陈都
张辰骁
段二红
赵顺征
易红宏
唐晓龙
关键词:  CeMn氧化物  水热法  元素掺杂  氯苯降解  催化氧化  反应路径    
Abstract: Chlorobenzene, as a chlorobenzene ring substance, has high biological toxicity and chemical stability, is difficult to degrade, and needs urgent treatment. Among many treatment technologies, catalytic oxidation has a good application prospect because of its deep degradation ability. In this study, based on the rare earth metal oxide CeO2, which is rich in resources, the effects of different preparation methods and doping of different transition metal elements on the catalytic oxidation of chlorobenzene were investigated. The physicochemical properties and reaction paths of the catalyst were analyzed and the results showed that compared with the direct calcination, acetic acid+hydrothermal, urea hydrolysis+hydrothermal methods, the CeO2 catalyst prepared by NaOH precipitation+hydrothermal method has better performance. The study of doping with different elements (Mn, Fe, Co) found that the chlorobenzene oxidation activity of Ce-Mn catalyst was significantly improved, and the catalytic conversion rate was 95% at 450 ℃ containing H2O (5vol%, the same below). The analysis showed that Mn doping significantly increased the acidic sites and REDOX sites on the surface of the catalyst, and the Brønsted/Lewis (B/L) acid ratio was increased from 0.259 to 0.419, which promoted more electron cycling (Ce4+/Ce3+) and reactive oxidizing species mobility (Oα↔Oβ). Chlorobenene molecules adsorbed on the active site (acid site or oxygen vacancy) on the catalyst surface underwent nucleophilic substitution reaction, dechlorinated to form phenol. Under the action of reactive oxygen species, chlorobenene gradually opened to intermediate species such as acetate, and finally converted to small molecular products such as CO2, H2O and HCl.
Key words:  CeMn oxide    hydrothermal method    element doping    chlorobenzene degradation    catalytic oxidation    reaction pathway
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  X511  
基金资助: 国家重点研发计划(2023YFB3810800);国家自然科学基金(U20A20130);中央高校基本科研业务费专项资金(FRF-EYIT-23-07)
通讯作者:  *唐晓龙,北京科技大学能源与环境工程学院教授、博士研究生导师,教育部新世纪优秀人才。现任北京科技大学科学技术研究院副院长,兼任中国工程教育认证协会环境类分委会委员、中国有色金属学会环境保护学术委员会委员等。2006年于北京理工大学(清华联合培养)获博士学位。长期以来主要从事烟气脱硫脱硝技术、工业废气资源化、环境功能材料研究与开发等工作。近年来发表论文300余篇,包括Applied Catalysis B: Environmental、Journal of Materials Chemistry A、Nano Research、Chemical Engineering Journal、Applied Surface Science等。txiaolong@126.com   
作者简介:  罗宁,2021年3月于天津工业大学取得硕士学位,硕士在读期间曾多次获得校级奖学金和校三好学生等荣誉称号。现为北京科技大学能源与环境工程学院博士研究生,在唐晓龙教授的指导下进行研究。目前主要研究领域为大气污染控制以及多污染物协同催化。高凤雨,北京科技大学副教授、硕士研究生导师,北京市科协青年人才托举工程获得者、“千人进千企”产业特派员、小米青年学者。长期致力于气态污染物净化与资源化技术(环境催化、小分子氧化、CO2RR等)以及关键催化材料的研究工作。以第一或通信作者在Applied Catalysis B: Environmental、Chemical Engineering Journal、Separation and Purification Technology、Journal of Environmental Sciences、Catalysis Science & Technology、《物理化学学报》等国内外重要学术刊物发表科研论文40余篇。
共同第一作者
引用本文:    
罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
LUO Ning, GAO Fengyu, CHEN Du, ZHANG Chenxiao, DUAN Erhong, ZHAO Shunzheng, YI Honghong, TANG Xiaolong. Preparation of CeMn Composite Oxide and Catalytic Oxidation of Chlorobenzene. Materials Reports, 2024, 38(16): 23050133-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050133  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23050133
1 Cao K X, Dai X X, Wu Z B, et al. Chinese Chemical Letters, 2021, 32(3), 1206.
2 Li G B, Shen K, Wang L, et al. Applied Catalysis B: Environmental, 2021, 286, 119865.
3 Wu X Q, Han R, Liu Q L, et al. Catalysis Science & Technology, 2021, 11(16), 5374.
4 Kamal M S, Razzak, S A, Hossain M M, et al. Atmospheric Environment, 2016, 140, 117.
5 Liu X L, Chen L, Zhu T Y, et al. Journal of Hazardous Materials, 2019, 363, 90.
6 Dai Q G, Bai S X, Wang J W, et al. Applied Catalysis B: Environmental, 2013, 142-143, 222.
7 Weng X L, Meng Q J, Liu J J, et al. Environmental Science & Technology, 2019, 53(2), 884.
8 Liu L Z, Zhou B, Liu Y W, et al. Journal of Colloid and Interface Science, 2022, 606, 1866.
9 Weng X L, Sun P F, Long Y, et al. Environmental Science & Technology, 2018, 51(14), 8057.
10 Ye G G, Lu Jun, Qian L L, et al. Journal of Saudi Chemical Society, 2021, 25(5), 101229.
11 Wu L Y, He Fei, Luo J Q, et al. RSC Advances, 2017, 43(7), 26952.
12 Hu E D, Zhang W Z, Wu J, et al. Journal of Environmental Chemical Engineering, 2022, 5(10), 108439.
13 Zhao H J, Han W L, Tang Z C, et al. Applied Catalysis B, Environmental, 2020, 276, 119133.
14 Ding J Y, Liu J, Yang Y J, et al. Chemosphere, 2021, 277, 130194.
15 Wang Y, Chen Y, Zhang L, et al. Microporous and Mesoporous Materials, 2020, 308, 110538.
16 Shi Q, Ding L, Long H M, et al. Materials, 2019, 13(1), 125.
17 Wan J, Tao F, Shi Y J, et al. Chemical Engineering Journal, 2021, 433, 133788.
18 Miran H A, Altarawneh M, Jiang Z T, et al. Catalysis Science & Technology, 2017, 7, 3902.
19 Yang S, Zhao H J, Dong F, et al. Molecular Catalysis, 2019, 463, 119.
20 Weng X L, Long Y, Wang W L, et al. Chinese Journal of Catalysis, 2019, 40(5), 638.
21 Chen G, Cai Y P, Zhang H, et al. Environmental Science & Technology, 2021, 55(20), 14204.
22 Chen G, Cai Y P, Zhang H, et al. Chemical Engineering Journal, 2020, 395, 125172.
23 Gu Y F, Cai T, Gao X H, et al. Applied Catalysis B: Environmental, 2019, 248, 264.
24 Hu W K, He F, Chen X, et al. Journal of Nanoparticle Research, 2018, 21(1), 6.
25 Gao F Y, Chen D, Luo N, et al. Chemical Journal of Chinese Universities, 2023, 44(4), 20220690 (in Chinese).
高凤雨, 陈都, 罗宁, 等. 高等学校化学学报, 2023, 44(4), 20220690.
26 Dai Y, Wang X Y, Dai Q G, et al. Applied Catalysis B: Environmental, 2012, 111-112, 141.
27 Sinquin G, Petit C, Libs S, et al. Applied Catalysis B: Environmental, 2001, 32(1-2), 37.
28 Dai Q G, Wang X Y, Lu G Z, et al. Applied Catalysis B: Environmental, 2008, 81(3-4), 192.
29 Gao F Y, Tang X L, Yi H H, et al. Chemical Engineering Journal, 2017, 317, 20.
30 Machida M, Uto M, Kurpgi D, et al. Chemistry of Materials, 2000, 12(10), 3158.
31 Zhan X C, Zhang X Y, Guo Y L, et al. Journal of Rare Earths, 2014, 32(2), 146.
32 Deng W, Tang Q X, Huang S S, et al. Applied Catalysis B: Environmental, 2020, 278, 119336.
33 Zhao J, Xi W J, Tu C S, et al. Applied Catalysis B: Environmental, 2020, 263, 118237.
34 Lu P, Ye L M, Yan X H, et al. Applied Applied Surface Science, 2021, 567, 150836.
35 Lv X L, Cai S C, Chen J, et al. Catalysis Science & Technology, 2021, 11 (13), 4581.
36 Li N, Cheng J, Xing X, et al. Journal of Hazardous Materials, 2020, 393, 122412.
37 Ta-Thi N A, Le T T, Vu V T, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 (10), 3886.
38 Aponte A G, Ramírez, M A, Mora Y C, et al. AIMS Materials Science, 2020, 7, 468.
39 Jayakumar C G, Irudayaraj A A, Raj A D, et al. Applied Physics A, 2019, 125, 742.
40 Liu J S, Zhen Y X, Zhang X F, et al. Ceramics International, 2022, 48(2), 1550.
41 Zamiri R, Ahangar H A, Kaushal A, et al. PLoS One, 2015, 10(4), e0122989.
42 Jiang W Y, Yu Y L, Bi F, et al. Environmental Science & Technology, 2019, 53(21), 12657.
43 Wang X W, Jiang W Y, Yin R Q, et al. Journal of Colloid and Interface Science, 2020, 574, 251.
44 Zhu L, Pan S L, Liu Z Y, et al. Industrial & Engineering Chemistry Research, 2020, 59(13), 5686.
45 Alderman S L, Farquar G R, Poliakoff E D, et al. Environmental Science & Technology, 2005, 39(19), 7396.
46 Dai X X, Wang X W, Long Y P, et al. Environmental Science & Technology, 2019, 53(21), 12697.
47 Zhu L, Li X, Liu Z Y, et al. Nanomaterials, 2019, 9(5), 675.
48 Liu J J, Shi X Y, Shan Y L, et al. Environmental Science & Technology, 2018, 52(20), 11769.
49 Liao Y N, Fu M L, Chen L M, et al. Catalysis Today, 2013, 216, 220.
50 Chen B B, Wu B, Yu L M, et al. ACS Catalysis, 2020, 10(11), 6176.
51 Chen J, Chen X, Yan D X, et al. Applied Catalysis B: Environmental, 2019, 250, 396.
52 Zhuang Y Y, Xu Z J, Zhang X R, et al. Separation and Purification Technology, 2022, 294, 121191.
53 Sun P F, Wang W L, Dai X X, et al. Applied Catalysis B: Environmental, 2016, 198, 389.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[3] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[4] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[5] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[6] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[7] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[8] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[9] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[10] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[11] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[12] 王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
[13] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[14] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[15] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed