Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23050071-10    https://doi.org/10.11896/cldb.23050071
  无机非金属及其复合材料 |
TPU/Nano-ZnO复合改性沥青的性能研究及微观机制
田小革*, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州
长沙理工大学交通运输工程学院,长沙 410114
Study on Performance and Micro-mechanism of TPU/Nano-ZnO Composite Modified Asphalt
TIAN Xiaoge*, LI Guangyao, CHEN Gong, YAO Shilin, HUANG Xuemei, WANG Junjie, LU Jinzhou
School of Traffic and Transportation Engineering,Changsha University of Science & Technology,Changsha 410114,China
下载:  全 文 ( PDF ) ( 32662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为促进聚合物/纳米改性沥青在耐久性路面中的应用,在实验室将不同掺量的聚氨酯及纳米氧化锌添加到A-70#基质沥青中制备了复合改性沥青。采用传统物理性能试验、动态剪切流变试验(DSR)、弯曲梁流变试验(BBR)研究了其物理性能与流变特性,基于响应面法的优化设计来明确两种改性剂的最佳掺量。借助傅里叶红外光谱试验(FTIR)对其微观改性机理进行探讨。采用高压紫外汞灯环境箱对改性沥青进行不同时间的紫外老化,分析其抗紫外老化能力,并基于主成分分析法评价了老化性能测试指标的显著性。结果表明:聚氨酯与纳米氧化锌的共同作用提高了基质沥青的高温稳定性及低温抗裂性,两种改性剂的最佳掺量分别为5%、3%。根据FTIR结果,复合改性沥青的改性过程既存在物理共混,又有化学加成反应。聚氨酯及纳米氧化锌的加入在基质沥青紫外老化过程中能够抑制羰基、亚砜基等极性基团的生成,复数剪切模量、羰基指数、劲度模量及亚砜基指数对沥青紫外老化性能的影响最为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田小革
李光耀
陈功
姚世林
黄雪梅
王俊杰
陆劲州
关键词:  聚氨酯  纳米氧化锌  复合改性沥青  宏观性能  微观机理    
Abstract: To promote the application of polymer/nano-modified asphalt in durable pavement,the composite modified asphalt was prepared by adding different dosage of TPU and nano-ZnO to A-70# matrix asphalt in the laboratory.The physical properties and rheological properties were studied by traditional physical properties test,dynamic shear rheological test (DSR) and bending beam rheological test (BBR).The optimal dosage of the two modifiers was determined based on the response surface method.The microscopic modification mechanism was discussed by Fourier infrared spectroscopy (FTIR).The anti-ultraviolet aging ability of the modified asphalt was analyzed by using high-pressure ultraviolet mercury lamp environment box.The significance of the aging performance test index was evaluated based on principal component analysis.The results show that the high temperature stability and low temperature cracking resistance of the matrix asphalt can be improved by the joint action of TPU and nano-ZnO,and the optimal dosage of the two modifiers is 5% and 3%,respectively.According to the results of FTIR,there are both physical blending and chemical addition reaction in the modification process of composite modified asphalt.The addition of TPU and nano-ZnO can inhibit the formation of polar groups such as carbonyl and sulfoxide groups in the ultraviolet aging process of asphalt.The complex shear modulus,carbonyl index,stiffness modulus and sulfoxide index have the most significant influence on the ultraviolet aging properties of asphalt.
Key words:  TPU    nano-ZnO    composite modified asphalt    macro-performance    micro-mechanism
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  U414  
基金资助: 国家自然科学基金(51978086;52278438);湖南省研究生科研创新项目(CX20210750);河北省交通运输厅科技项目(JX-202012)
通讯作者:  *田小革,长沙理工大学交通运输工程学院教授、博士研究生导师。2002年同济大学道路与铁道工程专业博士毕业,湖南省普通高校(优秀)青年骨干教师,入选湖南省121人才工程,长期致力于道路工程领域的应用基础研究及工程应用。主持国家自然科学基金项目3项、省级科研项目18项。获省部级科技奖励一等奖2项、二等奖2项、三等奖4项;在国内外发表学术论文100余篇,获国家发明专利5项、实用新型专利8项。tianxiaoge@126.com   
引用本文:    
田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
TIAN Xiaoge, LI Guangyao, CHEN Gong, YAO Shilin, HUANG Xuemei, WANG Junjie, LU Jinzhou. Study on Performance and Micro-mechanism of TPU/Nano-ZnO Composite Modified Asphalt. Materials Reports, 2024, 38(16): 23050071-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050071  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23050071
1 Peng B, Ling T Q, Ge H. Materials Reports, 2022, 36(20), 269 (in Chinese).
彭博, 凌天清, 葛豪. 材料导报, 2022, 36(20), 269.
2 Wang R R, Yue M J, Xiong Y C, et al. Construction and Building Materials, 2021, 268, 121189.
3 Zhang H. Research on road performance of polyurethane modified asphalt and its mixture. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
张欢. 聚氨酯改性沥青及其混合料路用性能研究. 硕士学位论文, 哈尔滨工业大学, 2020.
4 Wang Z C, Jin X, Sun Y Z, et al. Materials Reports, 2022, 36(S2), 245 (in Chinese).
王志臣, 金鑫, 孙雅珍, 等. 材料导报, 2022, 36(S2), 245.
5 Sun M, Zheng M L, Bi Y F, et al. Journal of Traffic and Transportation Engineering, 2019, 19(2), 49 (in Chinese).
孙敏, 郑木莲, 毕玉峰, 等. 交通运输工程学报, 2019, 19(2), 49.
6 He J H, Zhao Y N, Jiang H, et al. Highway, 2020, 65(2), 245 (in Chinese).
何俊辉, 赵艳纳, 蒋恒, 等. 公路, 2020, 65(2), 245.
7 Lei X, Cao D W, Zhang H Y, et al. Construction and Building Materials, 2016, 112, 949.
8 Peng C, Huang S F, You Z P, et al. Construction and Building Materials, 2020, 247, 118357.
9 Jin X, Guo N S, You Z P, et al. Construction and Building Materials, 2020, 234, 115834.
10 Liu X D. Journal of China & Foreign Highway, 2018, 36(6), 294 (in Chinese).
刘向东. 中外公路, 2018, 38(6), 294.
11 Lyu W J, Peng J, Zhu Y B, et al. Highway, 2020, 65(3), 248 (in Chinese).
吕文江, 彭江, 朱永彪, 等. 公路, 2020, 65(3), 248.
12 Sun M, Zheng M, Qu G, et al. Construction and Building Materials, 2018, 191, 386.
13 Qi B. Research on properties of polyurethane (PU) modified asphalt and mixture for deck pavement. Master’s Thesis, Chang’an University, China, 2018 (in Chinese).
祁冰. 适用于桥面铺装的聚氨酯(PU)改性沥青及混合料性能研究. 硕士学位论文, 长安大学, 2018.
14 Wan N, He Q S, Zhang S, et al. Journal of Highway and Transportation Research and Development, 2022, 39(9), 9(in Chinese).
万宁, 贺求生, 张帅, 等. 公路交通科技, 2022, 39(9), 9.
15 Xu X, Guo H Y, Wang X F, et al. Construction and Building Materials, 2019, 224, 732.
16 Zhang H L. Preparation and properties of bitumen/inorganic nanocomposites. Ph. D. Thesis, Wuhan University of Technology, China, 2012 (in Chinese).
张恒龙. 沥青/无机纳米复合材料的制备与性能研究. 博士学位论文, 武汉理工大学, 2012.
17 Zhang M X. Nanometer zinc oxide modified asphalt and its anti-aging properties research. Master’s Thesis, Chang’an University, China, 2015 (in Chinese).
张明祥. 纳米氧化锌改性沥青及其抗老化性能研究. 硕士学位论文, 长安大学, 2015.
18 Hou X D, Xiao F P, Wang J G, et al. Fuel, 2018, 226, 230.
19 Wang J Z, Xu G Q, Zhang H L, et al. Journal of Highway and Transportation Research and Development, 2020, 37(10), 35 (in Chinese).
王珺卓, 徐国庆, 张恒龙, 等. 公路交通科技, 2020, 37(10), 35.
20 Qu X, Ding H Y, Wang H N. China Journal of Highway and Transport, 2022, 35(6), 205 (in Chinese).
屈鑫, 丁鹤洋, 汪海年. 中国公路学报, 2022, 35(6), 205.
21 Pearson K. Philosophical Magazine, 1901, 2(11), 559.
22 Tian X G, Li G Y, Lu X R, et al. Journal of Materials in Civil Engineering, 2022, 34(8), 04022181.
23 Xu M, Zhang Y Z, Zhao P H, et al. Construction and Building Materials, 2020, 265, 120732.
24 Ghasemi P, Aslani M, Rollins D K, et al. Structural & Multidisciplinary Optimization, 2019, 59, 1335.
25 Mnoli E, Kouras A, Samara C. Chemosphere, 2004, 56, 867.
26 Yan C Q, Huang W D, Lin P, et al. Fuel, 2019, 252, 417.
[1] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[2] 阎格, 张慧娟, 蔡利海, 邵伟光, 刘文言. 燃料油与紫外光共同作用下热塑性聚氨酯结构与性能演变规律[J]. 材料导报, 2024, 38(6): 22050216-6.
[3] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[4] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[5] 刘宜娜, 杨荣杰, 冯文静, 王坤, 欧良, 陈兆恒, 陈昱隆. 聚氨酯软质泡沫制品阻燃性能检测分析[J]. 材料导报, 2024, 38(3): 22060066-4.
[6] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[7] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[8] 陆泉芳, 郝小霞, 冯妍, 马晓娟, 王波, 俞洁. 阴极辉光放电电解制备纳米ZnO[J]. 材料导报, 2024, 38(13): 22060298-7.
[9] 王琦胜, 何发旺, 刘振国, 王经伟, 李红玉. 不同聚酯二元醇合成聚氨酯对导电银浆性能的影响[J]. 材料导报, 2024, 38(13): 22110234-6.
[10] 鲁雯雨, 宁志华, 彭焘, 陈海燕, 金延. 聚氨酯蘑菇状仿生微纤维的混合黏附破坏分析[J]. 材料导报, 2024, 38(10): 22120085-7.
[11] 安绍都, 邵伟光, 樊桂琪, 李万利, 王建超, 杨建雄, 蔡利海. 热塑性聚氨酯耐油抗紫外老化性能改进研究[J]. 材料导报, 2024, 38(10): 23020156-5.
[12] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[13] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[14] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[15] 陈国晶, 王宇博, 邓顺利, 林欢, 王国军, 李万利. 共混法制备吸燃油自密封复合材料及其性能研究[J]. 材料导报, 2023, 37(18): 22020050-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed