Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060066-4    https://doi.org/10.11896/cldb.22060066
  高分子与聚合物基复合材料 |
聚氨酯软质泡沫制品阻燃性能检测分析
刘宜娜1,2, 杨荣杰1,2,*, 冯文静2,3, 王坤2,3, 欧良2,3, 陈兆恒2,3, 陈昱隆2,3
1 北京理工大学中原阻燃材料研究中心,北京 100081
2 国家阻燃材料与制品质量检验检测中心,北京 100081
3 北京理工阻燃科技有限公司,北京 100081
Experimental Study on Flame Retardancy of Flexible Polyurethane Foam Products
LIU Yina1,2, YANG Rongjie1,2,*, FENG Wenjing2,3, WANG Kun2,3, OU Liang2,3, CHEN Zhaoheng2,3, CHEN Yulong2,3
1 National Engineering Technology Flame Retardant Materials, Beijing Institute of Technology, Beijing 100081, China
2 National Center for Quality Supervision and Testing of Flame Retardant Materials, Beijing 100081, China
3 BIT Flame Retardant Science and Technology Ltd., Beijing 100081, China
下载:  全 文 ( PDF ) ( 6649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用氧指数仪、硬泡垂直燃烧仪、扫描电镜等测得软质聚氨酯(PU)泡沫的燃烧性能和泡孔结构,并依据GB 50826-2012 电磁波暗室工程技术规范 7.1.4和8.1.4章节,对燃烧性能指标要求进行判定;研究PU泡沫制品不同燃烧性能之间的相关性,对测试方法的适用性进行探讨。结果表明:氧指数越低,PU泡沫试样在空气中被引燃后难熄灭,质量剩余越少;密度较大、氧指数较高的软质PU泡沫试样在垂直燃烧试验中可实现离火自熄,氧指数与垂直燃烧的燃烧火焰高度相关性不大。对作为吸波材料的一批软质PU泡沫,按其工艺规范要求进行判定,垂直燃烧最大火焰高度(平均燃烧高度)超标是其阻燃性能未达标的主要原因。分析认为,由于软质PU泡沫开孔结构和垂直燃烧测试方法的特点,采用GB/T 8333-2012对软质PU泡沫的垂直燃烧性能进行评价是值得商榷的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宜娜
杨荣杰
冯文静
王坤
欧良
陈兆恒
陈昱隆
关键词:  软质聚氨酯泡沫  燃烧等级  氧指数  垂直燃烧    
Abstract: The combustion characteristics, cell structure of flexible polyurethane (PU) foam were tested by limit oxygen index tester, vertical burning tester and SEM, and fire grade classified by 7.1.4 and 8.1.4 of GB 50826 Technical code for construction of electromagnetic wave anechoic enclosure. The relationship between different combustion characteristics of PU was studied. The applicability of the burning test method was discussed. The results show that the lower limit oxygen index(LOI), the more difficult the PU foam is to extinguish after being ignited in the air, and the less mass remains. The PU foam with high density and high LOI was tested by vertical burning, the specimen was extinguished after the bur-ner was removed. There is no significant correlation between oxygen index and vertical combustion height (flame height). The judgement results of flexible PU foam according to requirement in absorbing material show that unqualified flame height of vertical combustion is the main reason for the unqualified flame retardant performance. Due to the open-cell structure of flexible PU foam and the characteristics of vertical burning test method, the evaluation method of vertical burning performance of flexible PU foam using GB/T 8333-2012 is debatable.
Key words:  flexible PU foam    combustion grade    limit oxygen index    vertical burning test
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TQ328  
通讯作者:  *杨荣杰,北京理工大学材料学院教授、博士研究生导师。1986年于北京工业学院(现北京理工大学)获得硕士学位,1989年中国科学院化学研究所博士毕业后到北京理工大学工作至今。目前主要从事聚合物阻燃材料、高性能固体推进剂、功能高分子材料研究工作。主持并承担国家重大演示验证项目、国家高技术研究发展计划“863”(计划)、“973”计划、科技支撑计划、国际科技合作计划专项、总装备部创新项目、预研项目、广东省产学研项目等60余项,获得国家技术发明二等奖1项(第1获奖人)、省级科技进步奖1项(第2获奖人)。国防科技工业511人才。yrj@bit.edu.cn   
作者简介:  刘宜娜,2018年3月于北京理工大学获得硕士学位。现为北京理工大学材料学院实验人员,目前主要研究领域为阻燃材料、阻燃剂以及阻燃材料评价。
引用本文:    
刘宜娜, 杨荣杰, 冯文静, 王坤, 欧良, 陈兆恒, 陈昱隆. 聚氨酯软质泡沫制品阻燃性能检测分析[J]. 材料导报, 2024, 38(3): 22060066-4.
LIU Yina, YANG Rongjie, FENG Wenjing, WANG Kun, OU Liang, CHEN Zhaoheng, CHEN Yulong. Experimental Study on Flame Retardancy of Flexible Polyurethane Foam Products. Materials Reports, 2024, 38(3): 22060066-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060066  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22060066
1 Feng W J, Li S P, Chen Y J, et al. China Plastics, 2020, 34(3), 93(in Chinese).
冯文静, 李守平, 陈雅君, 等. 中国塑料, 2020, 34(3), 93.
2 Mathivanan S, Mohan R, Das B N , et al. Journal of Polymer Enginee-ring, 2016, 36(3), 253.
3 Gong N. Flexible polyurethane foam combustion performance and fire hazard analysis. Master's Thesis, Southwest Jiaotong University, China, 2011(in Chinese).
龚娜. 软质聚氨酯泡沫塑料燃烧性能及火灾危险性分析. 硕士学位论文, 西南交通大学, 2011.
4 Liu G S, Feng J, Hao J W, et al. China Plastics, 2011, 25(11), 5(in Chinese).
刘国胜, 冯捷, 郝建薇, 等. 中国塑料, 2011, 25(11), 5.
5 Migda W, Szczepanski M, Jankowski R, et al. Periodica Polytechnica-civil Engineering, 2019, 63(2), 480.
6 GB 50826-2012 Technical code for constructuin of electromagnetic wave anechoic enclosure, China Standards Press, China, 2012(in Chinese).
GB 50826-2012电磁波暗室工程技术规范, 中国标准出版社, 2012.
7 GB 8624-2012 Classification for burning behavior of building materials and products, China Standards Press, China, 2012(in Chinese).
GB 8624-2012建筑材料及制品燃烧性能分级, 中国标准出版社, 2012.
8 TB/T 3237-2010 Flame retardant technical specification of decorating materials for multiple unit train, China Rails Press, China, 2010(in Chinese).
TB/T 3237-2010动车组用内装材料阻燃技术条件, 中国铁道出版社, 2010.
9 TB/T 3138-2018 Techinical Specification of flame retardant materials for railway locomotive and vehicle, China Rails Press, China, 2018(in Chinese).
TB/T 3138-2018机车车辆用材料阻燃技术要求, 中国铁道出版社, 2018.
10 GB/T 8333-2008 Test method for flammability of rigid cellular plastic-Virtical burning method, China standards Press, China, 2008(in Chinese).
GB/T 8333-2008硬质泡沫塑料燃烧性能试验方法 垂直燃烧法, 中国标准出版社, 2008.
11 GB/T 2406. 2-2009 Plastics-Determination of burning behaviour by oxygen index-Part 2:Ambient-temperature test, China standards Press, China, 2009(in Chinese).
GB/T 2406. 2-2009塑料 用氧指数法测定燃烧行为:第2部分 室温试验, 中国标准出版社, 2009.
12 ASTM D 3014-2011 Standard test method for flame height, time of bur-ning, and loss of mass of rigid thermoset cellular plastics in a vertical position, American Society of Testing Materials, 2011.
[1] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed