Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060068-6    https://doi.org/10.11896/cldb.22060068
  无机非金属及其复合材料 |
掺氢氧化钙对超高强混凝土力学性能影响的机理
朋改非1,*, 张贵1, 左雪宇1,2, 丁宏3,4, 陈喜旺3, 王海迪4, 刘新建4
1 北京交通大学土木建筑工程学院,北京 100044
2 中建三局集团北京有限公司,北京 100162
3 北京建工新型建材有限责任公司,北京 100015
4 北京建工恒均工程检测有限公司,北京 102615
Mechanism for the Influence of Added Hydrated Lime on Mechanical Properties of Ultra-high Strength Concrete
PENG Gaifei1,*, ZHANG Gui1, ZUO Xueyu1,2, DING Hong3,4, CHEN Xiwang3, WANG Haidi4, LIU Xinjian4
1 Faculty of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2 China Construction Third Bureau Group Beijing Limited Liability Company, Beijing 100162, China
3 Beijing Construction Engineering Group, Advanced Construction Materials Limited Liability Company, Beijing 100015, China
4 Beijing Construction Engineering Group, Hengjun Engineering Detection Limited Liability Company, Beijing 102615, China
下载:  全 文 ( PDF ) ( 5688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于含矿物掺合料较多的超高性能混凝土(Ultra-high performance concrete,UHPC)中火山灰反应所需氢氧化钙含量不足的状况,在配制超高强混凝土(UHPC基体)时掺加氢氧化钙,研究其对超高强混凝土力学性能的影响机理。结果表明,超高强混凝土力学性能的改善源于掺入的氢氧化钙与矿物掺合料中的SiO2发生火山灰反应生成C-S-H及C-A-S-H凝胶,且在组合养护(90 ℃热水养护2 d+250 ℃干热养护3 d)下,部分C-(A)-S-H凝胶向托勃莫来石与硬硅钙石晶体转变,改善了超高强混凝土的微观结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朋改非
张贵
左雪宇
丁宏
陈喜旺
王海迪
刘新建
关键词:  超高强混凝土  氢氧化钙  力学性能  机理    
Abstract: Based on the drawback of insufficient calcium hydroxide content required for pozzolanic reaction in ultra-high performance concrete (UHPC) incorporating high volume mineral admixtures, hydrated lime was intentionally added into the ultra-high strength concrete (matrix of UHPC) to investigate its influence on the mechanical properties of ultra-high strength concrete. The mechanism for the improvement in mechanical properties of ultra-high strength concrete should be pozzolanic reaction between hydrated lime and mineral admixtures, which formed C-S-H and C-A-S-H gels. Partial C-(A)-S-H gels were transformed into tobermorite and xonotlite crystals under combined curing (90 ℃ hot water curing for 2 d and 250 ℃ dry air heating for 3 d), which improved both the microstructure and mechanical properties of ultra-high strength concrete.
Key words:  ultra-high strength concrete    hydrated lime    mechanical property    mechanism
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878032);北京市自然科学基金(8212013;8172036)
通讯作者:  *朋改非,北京交通大学土木建筑工程学院教授、博士研究生导师。1987年同济大学材料科学与工程系本科毕业,1992年清华大学材料科学与工程系硕士毕业,1999年香港理工大学土木与结构工程系博士毕业。目前主要从事超高性能混凝土、高性能混凝土、再生混凝土等方面的研究工作。在Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Mate-rials、《硅酸盐学报》等期刊发表论文100余篇。gfpeng@bjtu.edu.cn   
引用本文:    
朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
PENG Gaifei, ZHANG Gui, ZUO Xueyu, DING Hong, CHEN Xiwang, WANG Haidi, LIU Xinjian. Mechanism for the Influence of Added Hydrated Lime on Mechanical Properties of Ultra-high Strength Concrete. Materials Reports, 2024, 38(3): 22060068-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060068  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22060068
1 Neville A M. Properties of concrete(fifth edition), Essex, England, 2011, pp.81.
2 Taylor H F W. Cement chemistry(second edition), 1 Heron Quay, London, 1997, pp.280.
3 Kasaniya M, Thomas M D A, Moffatt E G. Cement and Concrete Research, 2021, 139, 106259.
4 Liu C, Yang L, Wang F Z, et al. Construction and Building Materials, 2020, 270, 121439.
5 Van V T A, Roßler C, Bui D D, et al. Cement and Concrete Composites, 2014, 53, 270.
6 Soliman N A, Tagnit-Hamou A. Construction and Building Materials, 2016, 125, 600.
7 Peng Y Z, Hu S G, Ding Q J. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(2), 349.
8 Mira P, Papadakis V G, Tsimas S. Cement and Concrete Research, 2002, 32(5), 683.
9 Barbhuiya S A, Gbagbo J K, Russell M I, et al. Construction and Buil-ding Materials, 2009, 23(10), 3233.
10 Lorca P, Calabuig R, Benlloch J, et al. Materials and Design, 2014, 64, 535.
11 Gunasekara C, Sandanayake M, Zhou Z, et al. Construction and Buil-ding Materials, 2020, 253, 119205.
12 Korpa A, Kowald T, Terttin R. Cement and Concrete Research, 2009, 39(2), 69.
13 Galmarini S, Bowen P. Cement and Concrete Research, 2016, 81, 16.
14 Gallucci E, Scrivener K. Cement and Concrete Research, 2007, 37(4), 492.
15 Shen Y S, Tang M L, Shen X D. Journal of Chinese Ceramic Society, 2016, 44(2), 232(in Chinese).
沈裕盛, 唐明亮, 沈晓冬. 硅酸盐学报, 2016, 44(2), 232.
16 Li X Y, Li J, Lu Z Y, et al. Construction and Building Materials, 2020, 234, 117342.
17 Li W G, Huang Z Y, Hu G Q, et al. Construction and Building Mate-rials, 2017, 131, 767.
18 He Y J, Mao R T, Lu L N, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2017, 32(3), 598.
19 Chen T F, Gao X J, Ren M. Construction and Building Materials, 2018, 158, 864.
20 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147.
21 Amnadnua K, Tangchirapat W, Jaturapitakkul C. Materials and Design, 2013, 51, 894.
22 Xu Y Z, Wu L D, Min H T, et al. China Building Materials Science & Technology, 2019, 28(3), 70(in Chinese).
许永震, 吴来帝, 敏海涛, 等. 中国建材科技, 2019, 28(3), 70.
23 Yang J. Experimental research on mechanical properties, explosive spalling behavior and its improvements of ultra-high-performance concrete with coarse aggregate exposed to high temperature. Ph. D. Thesis, Beijing Jiaotong University, China, 2017(in Chinese).
杨娟. 含粗骨料超高性能混凝土的高温力学性能、爆裂及其改善措施试验研究. 博士学位论文, 北京交通大学, 2017.
24 Huang W, Kazemi-Kamyab H, Sun W, et al. Cement and Concrete Composites, 2017, 77, 86.
25 Ma W P, Brown P W. Cement and Concrete Research, 1997, 27(8), 1237.
26 Odler I. Lea's chemistry of cement and concrete, Elsevier Science & Technology Books, Netherland, 1998, pp.241.
27 Yazici H, Deniz E, Baradan B. Construction and Building Materials, 2013, 42, 53.
28 Hiremath P H, Yaragal S C. Construction and Building Materials, 2017, 154, 72.
29 Puertas F, Palacios M, Manzano H, et al. Journal of the European Ceramic Society, 2011, 31, 2043.
30 Lin R S, Han Y, Wang X Y. Cement and Concrete Composites, 2021, 116, 103871.
31 Sugiyama D. Cement and Concrete Research, 2008, 38, 1270.
32 Wu Z M, Khayat K H, Shi C J. Cement and Concrete Research, 2017, 95, 247.
33 Sepulcre-Aguilar A, Hernandez-Olivares F. Cement and Concrete Research, 2010, 40(1), 66.
34 Yang X L, Cui C, Cui X Y, et al. Jouanl of Wuhan University of Technology-Materials Science Edition, 2014, 29(2), 298.
35 Luo Z, Ma H W, Yang J. Journal of the Chinese Ceramic Society, 2017, 45(11), 1679(in Chinese).
罗征, 马鸿文, 杨静. 硅酸盐学报, 2017, 45(11), 1679.
36 Myers R J, Lopital E, Provis J L, et al. Cement and Concrete Research, 2015, 68, 83.
37 Matsui K, Kikuma J, Tsunashima M, et al. Cement and Concrete Research, 2011, 41(5), 510.
38 Zdeb T. Construction and Building Materials, 2019, 209, 326.
39 Hu Z L, Wyrzykowski M, Griffa M, et al. Cement and Concrete Research, 2020, 134, 106104.
40 Zhao Q Y, Cui C, He B, et al. Construction and Building Materials, 2020, 237, 117660.
41 Hou J Q, Cui C, He B, et al. Journal of the Chinese Ceramic Society, 2018, 46(8), 1149(in Chinese).
侯剑桥, 崔崇, 何兵, 等. 硅酸盐学报, 2018, 46(8), 1149.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[7] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[8] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[13] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[14] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[15] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed