Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22120085-7    https://doi.org/10.11896/cldb.22120085
  高分子与聚合物基复合材料 |
聚氨酯蘑菇状仿生微纤维的混合黏附破坏分析
鲁雯雨1, 宁志华1,*, 彭焘1, 陈海燕1, 金延2
1 暨南大学力学与建筑工程学院,“重大工程灾害与控制”教育部重点实验室,广州 510632
2 沈阳市建设工程质量监督站,沈阳 110071
Analysis of Mixed-mode Adhesion Failure of Polyurethane Bio-inspired Mushroom-shaped Microfibers
LU Wenyu1, NING Zhihua1,*, PENG Tao1, CHEN Haiyan1, JIN Yan2
1 MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China
2 Shenyang Construction Engineering Quality Supervision Station, Shenyang 110071, China
下载:  全 文 ( PDF ) ( 19663KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在仿生学领域壁虎因具有优越的攀爬能力而被广泛研究。为对壁虎仿生微结构的垂直攀爬功能进行设计,本工作对壁虎仿生微纤维与垂直表面之间的黏附机制进行了深入研究。采用双线性内聚力模型对聚氨酯(PU)蘑菇状仿生微纤维与刚性基体之间的界面黏附行为进行研究。运用压缩+剪切、剪切加载、拉伸+剪切分别模拟壁虎足部的附着、滑移及分离等爬行动作,探讨壁虎爬行过程中的黏附破坏机理。结果表明,在剪切加载、拉伸+剪切混合加载下,界面均发生法向和切向的混合黏附破坏;在压缩+剪切混合加载下,界面发生切向脱黏或混合黏附破坏取决于压缩载荷的大小。法向载荷通过改变微纤维与基体的接触面积来实现对切向黏附承载力的调控。斜向加载下界面的黏附承载力与载荷倾角有关,对于所选用的聚氨酯蘑菇状仿生微纤维,当斜向压力的倾角小于52°时,界面的切向黏附承载力随着斜向压力倾角的增大而增大;最优的斜向拉力方向为17°,沿该方向可用最小的拉力实现界面的脱黏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁雯雨
宁志华
彭焘
陈海燕
金延
关键词:  壁虎仿生黏附  聚氨酯(PU)蘑菇状微纤维  黏附机制  混合黏附破坏    
Abstract: Geckos have been extensively studied in the field of bionics due to their superior climbing ability. The adhesion mechanism between the gecko biomimetic microfibers and the vertical surface was thoroughly investigated in order to design the vertical climbing function of the gecko bionic microstructure. A bilinear cohesion model was used to analyze the interfacial adhesion behavior of polyurethane(PU) mushroom-shaped biomi-metic microfibers and rigid substrates. To understand the failure mechanism during the process of gecko climbing, the crawling actions of gecko feet such as attachment, sliding and separation, were simulated by compression-shear combined loading, pure shear loading and tension-shear combined loading, respectively. The results show that, normal-tangential mixed mode adhesion failure occurs when subject to pure shear loading or tension-shear combined loading. However, the occurrence of tangential debonding or mixed-mode adhesion failure depends on the magnitude of compressive load. The normal loading can regulate the tangential adhesion bearing capacity by changing the contact area between the microfibers and the substrates. The adhesion bearing capacity of the interface under oblique loading is related to the loading inclination angle. For the selected polyurethane mushroom-like biomimetic microfibers, the tangential adhesion bearing capacity increases with the increase of oblique pressure inclination angle for an oblique pressure inclination angle less than 52°. The optimal peeling angle is 17°, which allows the interface to be debonded with the least amount of tension.
Key words:  gecko bionic adhesion    polyurethane mushroom-shaped microfibers    adhesion mechanism    mixed-mode adhesion failure
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  Q692  
基金资助: 广东省普通高校重点专项(2020ZDZX2044)
通讯作者:  *宁志华,暨南大学力学与建筑工程学院副教授、硕士研究生导师。1999年湖南大学工程力学专业本科毕业,2002年固体力学专业硕士毕业后到暨南大学工作至今,2011年暨南大学工程力学专业博士毕业。主要从事复合材料损伤分析、压力容器疲劳与断裂及仿生力学方面的研究工作。发表论文30多篇,包括Composites Part B、International Journal of Pressure Vessels and Piping、ASME Journal of Pressure vessel Technology和Mechanics of Time-Dependent Material等。tningzhihua@jnu.edu.cn   
作者简介:  鲁雯雨,2019年6月获得中北大学本科学位,现为暨南大学力学与建筑学院硕士研究生,在宁志华教授的指导下进行研究。目前主要从事复合材料损伤分析、断裂力学以及仿生力学方面的研究工作。
引用本文:    
鲁雯雨, 宁志华, 彭焘, 陈海燕, 金延. 聚氨酯蘑菇状仿生微纤维的混合黏附破坏分析[J]. 材料导报, 2024, 38(10): 22120085-7.
LU Wenyu, NING Zhihua, PENG Tao, CHEN Haiyan, JIN Yan. Analysis of Mixed-mode Adhesion Failure of Polyurethane Bio-inspired Mushroom-shaped Microfibers. Materials Reports, 2024, 38(10): 22120085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120085  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22120085
1 Arzt E, Gorb S, Spolenak R. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19), 10603.
2 Autumn K, Liang Y A, Hsieh S T, et al. Nature, 2000, 405(6787), 681.
3 Garner A M, Pamfilie A M, Dhinojwala A, et al. Journal of Experimental Biology, 2021, 224(4), jeb241240.
4 Chary S, Tamelier J, Turner K. Smart Materials and Structures, 2013, 22(2), 025013.
5 Shi W, Cheng X, Cheng K. Langmuir, 2022, 38(29), 8890.
6 Labonte D, Federle W. Journal of the Royal Society Interface, 2016, 13(122), 20160373.
7 Yao H, Rocca G D, Guduru P R, et al. Journal of the Royal Society Interface, 2008, 5(24), 723.
8 Varenberg M, Gorb S. Journal of the Royal Society Interface, 2008, 5(24), 785.
9 Lee J, Majidi C, Schubert B, et al. Journal of the Royal Society Interface, 2008, 5(25), 835.
10 Schubert B, Lee J, Majidi C, et al. Journal of the Royal Society Interface, 2008, 5(25), 845.
11 Kim J K, Varenberg M. Journal of the Royal Society Interface, 2017, 14(137), 20170832.
12 Naylor E R, Higham T E. Integrative and Comparative Biology, 2019, 59(1), 168.
13 Kendall K. Journal of Physics D: Applied Physics, 1975, 8(13), 1449.
14 Autumn K, Dittmore A, Santos D, et al. Journal of Experimental Biology, 2006, 209(18), 3569.
15 Yu T, Pesika N, Zeng H, et al. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51), 19320.
16 Shen L, Jagota A, Hui C Y. Langmuir, 2009, 25(5), 2772.
17 Song J, Mengüç Y, Sitti M. Journal of Adhesion Science and Technology, 2013, 27(17), 1921.
18 Peng Z L, Chen S H, Soh A K. International Journal of Solids and Structures, 2010, 47(14-15), 1952.
19 Cheng Q H, Chen B, Gao H J, et al. Journal of the Royal Society Interface, 2012, 9(67), 283.
20 Gouravaraju S, Sauer R A, Gautam S S. The Journal of Adhesion, 2021, 97(10), 952.
21 Gouravaraju S, Sauer R A, Gautam S S. The Journal of Adhesion, 2021, 97(13), 1234.
22 Zhang X, Wang Y, Hensel R, et al. Journal of Applied Mechanics, 2020, 88(3), 1.
23 Liu S, Cui Z, Su Z, et al. Tribology International, 2022, 175, 107808.
24 Del Campo A, Greiner C, Arzt E. Langmuir, 2007, 23(20), 10235.
25 Heepe L, Carbone G, Pierro E, et al. Applied Physics Letters, 2014, 104(1), 1175.
26 Hensel R, Moh K, Arzt E. Advanced Functional Materials, 2018, 28(28), 100865.
27 Feng X, Zhao H, Li B. Frontiers of biomimetic mechanics, Shanghai Jiao Tong University Press, China, 2019(in Chinese).
冯西桥, 赵红平, 李博. 仿生力学前沿, 上海交通大学出版社, 2019.
28 Xue L, Pham J T, Iturri J, et al. Langmuir, 2016, 32(10), 2428.
29 Tinnemann V, Arzt E, Hensel R. Journal of the Mechanics and Physics of Solids, 2019, 123, 20.
[1] 孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed