Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23020253-6    https://doi.org/10.11896/cldb.23020253
  无机非金属及其复合材料 |
石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型
吴浪1, 鲍蓉1, 戴健1, 雷斌2,*
1 江西科技师范大学土木工程学院,南昌 330013
2 南昌大学工程建设学院,南昌 330031
Hydration Kinetics Model of Limestone-Calcined Clay-Cement (LC3) System
WU Lang1, BAO Rong1, DAI Jian1, LEI Bin2,*
1 School of Civil Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
2 School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 3057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石灰石-煅烧黏土-水泥(LC3)是一种新型复合建筑材料,在满足水泥可持续生产和节能减排方面具有优良的应用前景。本工作通过考虑煅烧黏土和石灰石矿物掺合料的稀释效应、成核作用和火山灰反应等影响作用,提出了一种评估LC3混凝土化学和力学性能的水化动力学模型。根据动力学模型,分析计算了不同掺量情况下LC3胶凝体系的累计水化热、氢氧化钙含量和结合水总量。通过将模型分析结果与试验结果相比较,证明了所建立的模型可较好地模拟LC3水泥胶凝体系的水化进程。结果表明,在一定掺量范围内,LC3水泥胶凝体系的水化程度与掺量成正比,而氢氧化钙含量、结合水总量和累计水化热与之成反比,LC3材料用于水泥辅助胶凝材料时的推荐掺量为25%~35%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴浪
鲍蓉
戴健
雷斌
关键词:  石灰石-煅烧黏土-水泥(LC3)  水化动力学  胶凝体系  矿物掺合料    
Abstract: Limestone-calcined clay-cement (LC3) concrete is a new type of composite building material that has a excellent application prospects in meeting the sustainable production of cement and energy conservation and emission reduction. This work proposed a hydration kinetics model for evaluating the chemical and mechanical properties of LC3 concrete by considering the dilution effect, nucleation effect, and volcanic ash reaction of calcined clay and limestone mineral admixtures. Based on the dynamic model, the cumulative hydration heat, calcium hydroxide content, and total bound water of the LC3 cementitious system with different dosages were analyzed and calculated. By comparing the model analysis results with the experimental results, it is proved that the established model can better simulate the hydration process of LC3 cement compound cementing system. The results show that within a certain range of dosage, the hydration degree of LC3 cement cementitious system is directly proportional to the dosage, while the calcium hydroxide content, total bound water, and cumulative hydration heat are inversely proportional to them. The recommended dosage of LC3 used as cementitious auxiliary cementitious material is 25%—35%.
Key words:  limestone-calcined clay-cement (LC3)    hydration kinetics    cementitious system    mineral admixtures
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(51968046;52268043);江西省主要学科学术和技术带头人培养计划-领军人才项目(20204BCJ22003)
通讯作者:  * 雷斌,南昌大学建筑工程学院教授、博士研究生导师。2002年7月、2005年7月在南昌大学分别取得工学学士、工学硕士学位。2009年8月于同济大学土木工程学院取得工学博士学位,毕业后进入南昌大学工作至今。目前主要从事建筑固废资源化利用、混凝土结构耐久性能、路面材料再生技术以及结构全生命周期环境效应评价等研究。发表期刊论文50余篇,其中SCI收录20余篇,授权发明专利10余项。blei@ncu.edu.cn   
作者简介:  吴浪,江西科技师范大学土木工程学院副教授、硕士研究生导师。2003年7月、2007年7月在南昌大学分别取得工学学士、工学硕士学位。2011年6月于南昌大学建筑工程学院取得工学博士学位,毕业后进入江西科技师范大学工作至今。目前主要从事水泥与混凝土微细观结构力学性能及其预测方面的研究工作。发表期刊论文20余篇,其中EI收录5篇,核心论文10余篇。
引用本文:    
吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
WU Lang, BAO Rong, DAI Jian, LEI Bin. Hydration Kinetics Model of Limestone-Calcined Clay-Cement (LC3) System. Materials Reports, 2024, 38(15): 23020253-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020253  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23020253
1 Grzegorz L G. Composite Structures, 2018, 200, 515.
2 Berriel S S, Favier A, Domínguez E R, et al. Journal of cleaner Production, 2016, 124, 361.
3 Zhou Y W, Gong G Q, Xi B, et al. Composites Part B:Engineering, 2022, 243, 110183.
4 De Matos P R, Andrade Neto J S, Sakata R D, et al. Materials and Structures, 2022, 55(8), 1.
5 Ren M, Wen X, Gao X, et al. Construction and Building Materials, 2021, 273, 121714.
6 Ferreiro S, Herfort D, Damtoft J S. Cement and Concrete Research, 2017, 101, 1.
7 Lothenbach B, Le Saout G, Gallucci E, et al. Cement and Concrete Research, 2008, 38(6), 848.
8 Huang Z Y, Huang Y S, Liao W Y, et al. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2020, 21(11), 892.
9 Shah V, Parashar A, Mishra G, et al. Advances in Cement Research, 2020, 32(3), 101.
10 Mo Z, Wang R, Gao X. Construction and Building Materials, 2020, 256, 119454.
11 Wei J J, Wu Z R, Fang C Y, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2355 (in Chinese).
韦经杰, 吴卓锐, 方长乐, 等. 硅酸盐学报, 2021, 49(11), 2355.
12 Limbachiya M, Meddah M S, Ouchagour Y. Construction and Building Materials, 2012, 27(1), 439.
13 Guo M, Gong G, Yue Y, et al. Journal of Cleaner Production, 2022, 366, 132820.
14 Dhandapani Y, Sakthivel T, Santhanam M, et al. Cement and Concrete Research, 2018, 107, 136.
15 Machado I L, Moya H I, Sanchez S B, et al. In:Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete. Springer Netherlands, 2018, pp. 293.
16 Pillai R G, Gettu R, Santhanam M, et al. Cement and Concrete Research, 2019, 118, 111.
17 Krishnan S, Bishnoi S. Cement and Concrete Research, 2020, 138, 106232.
18 Yang P, Dhandapani Y, Santhanam M, et al. Cement and Concrete Research, 2020, 130, 106010.
19 Tomosawa F, Noguchi T, Hyeon C. Proceedings of Tenth International Congress Chemistry of Cement, 1997, 4, 72.
20 Park K B, Jee N Y, Yong I S, et al. ACI Materials Journal, 2008, 105(2), 180.
21 Maruyama I. In:Proceedings of the International Conference of Civil and Environmental Engineering. Hiroshima, 2003, pp. 53.
22 Wang X Y, Lee H S. Cement and Concrete Research, 2010, 40(7), 984.
23 Song G Q, Ren X, Wu L. China Powder Science and Technology, 2013, 19(2), 19 (in Chinese).
宋固全, 任晓, 吴浪. 中国粉体技术, 2013, 19(2), 19.
24 Wu L, Wu X P, Huang S H M, et al. Journal of Functional Materials, 2022, 53(5), 5178 (in Chinese).
吴浪, 吴小萍, 黄斯蕙铭, 等. 功能材料, 2022, 53(5), 5178.
25 Kim B J, Yi C, Kang K I. Construction and Building Materials, 2014, 58, 206.
26 Go S S, Lee H C, Lee J Y, et al. Construction and Building Materials, 2009, 23(3), 1438.
27 Danner T, Norden G, Justnes H. Applied Clay Science, 2018, 162, 391.
28 Bentz D P. Cement and Concrete Composites, 2006, 28(2), 124.
29 Bonavetti V L, Rahhal V F, Irassar E F. Cement and Concrete Research, 2001, 31(6), 853.
30 Ipavec A, Gabrovšek R, Vuk T, et al. Journal of the American Ceramic Society, 2011, 94(4), 1238.
31 Avet F, Li X, Scrivener K. Cement and Concrete Research, 2018, 106, 40.
32 Chaube R, Kishi T, Maekawa K. Modelling of concrete performance:hydration, microstructure and mass transport, CRC Press, 1999.
33 Bentz D P. Cement and Concrete Research, 2006, 36(2), 238.
[1] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[2] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[3] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[4] 贺炯煌, 龙广成, 常智杨, 杨智涵, 谢友均. 不同养护温度下SAP对水泥浆体水化动力学的影响[J]. 材料导报, 2022, 36(22): 20100061-7.
[5] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[6] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[7] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[8] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[9] 张丰, 白银, 蔡跃波. 5 ℃养护下甲酸钙对水泥早期水化的影响[J]. 材料导报, 2021, 35(10): 10055-10061.
[10] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[11] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[12] 吕兴栋, 王学斌, 李北星. 有机膦酸类化合物在混凝土工程中的应用及缓凝机理研究进展[J]. 材料导报, 2020, 34(15): 15184-15189.
[13] 张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
[14] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[15] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed