Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22100112-7    https://doi.org/10.11896/cldb.22100112
  金属与金属基复合材料 |
汽车用IF钢连铸坯第Ⅲ脆性区及其形成机理分析
艾松元, 王凯, 龙木军*, 张浩浩, 陈登福, 段华美
重庆大学材料科学与工程学院,重庆 400030
The Third Brittle Region and Its Mechanism Analysis of IF Steel Slab Used in Automobile
AI Songyuan, WANG Kai, LONG Mujun*, ZHANG Haohao, CHEN Dengfu, DUAN Huamei
College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
下载:  全 文 ( PDF ) ( 13652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探明连铸坯第Ⅲ脆性区及其形成机理对避免铸坯裂纹的产生、有效调控铸坯性能具有重要指导作用。采用Gleeble热/力模拟试验机对汽车用IF钢铸坯的高温力学性能进行了试验研究;结合热膨胀测试及组织分析手段,探究了IF钢铸坯第Ⅲ脆性区的形成机理。结果表明:IF钢的高温热塑性较优异,第Ⅲ脆性区温度范围为850~950 ℃,二冷低延性区为875~925 ℃,1 250 ℃以上抗拉强度和屈服强度分别低于30 MPa和20 MPa;从变形和受力两个角度综合考虑,矫直区温度应控制在950~1 250 ℃。第二相含量在950 ℃左右达到最高,大量微米级的TiN和少量TiN与MnS复合第二相会导致热塑性下降。950 ℃以下大量微米级第二相、Ae3温度附近形变诱导铁素体以及Aff~Ar3温度范围内奥氏体分解的共同作用是导致IF钢连铸坯第Ⅲ脆性区形成的根本原因;不同冷速下IF钢铸坯二冷低延性区的温度范围与T40%α(CR)~Ae3基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
艾松元
王凯
龙木军
张浩浩
陈登福
段华美
关键词:  IF钢  第Ⅲ脆性区  第二相  奥氏体分解  相分数  高温热塑性    
Abstract: Exploring the third brittle region of continuous casting slab and its mechanism plays an important guiding role in avoiding slab cracks and effectively regulating slab properties. The high-temperature mechanical properties of interstitial-free steel (IF) slab for automobiles have been studied by using Gleeble thermal/mechanical simulation testing machine. Combined with thermal expansion test and microstructure analysis, the formation mechanism of the third brittle region of IF steel slab has been explored. The results show that the IF steel has excellent thermoplasticity, the temperature range of the third brittle region is 850—950 ℃, the second cooling low ductility zone is 875—925 ℃, and the tensile strength and yield strength above 1 250 ℃ are lower than 30 MPa and 20 MPa, respectively. From the perspective of deformation and stress, the temperature of the straightening zone should be controlled between 950 and 1 250 ℃. The content of the second phase reaches the highest level around 950 ℃, which is mainly composed of a large amount of micron-sized TiN and a small amount of composite second phases of TiN and MnS, which lead to a decrease in thermoplasticity. This combined effect, which a large number of micron-sized second phases, deformation-induced ferrite near the Ae3 temperature, and austenite decomposition in the AffAr3 temperature range, is the root cause of the third brittle region of the IF steel slab. The IF steel second cooling low ductility zones under different cooling rates can be calculated according to Tα40%(CR)—Ae3.
Key words:  IF steel    the third brittle region    second phase    austenite decomposition    phase fraction    thermoplasticity
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG142.1  
  TF777  
基金资助: 国家自然科学基金(51874059)
通讯作者:  * 龙木军,重庆大学材料科学与工程学院教授、博士研究生导师、副院长。教育部“长江学者奖励计划”青年学者,重庆市首批“重庆英才 青年拔尖人才”,中国金属学会冶金青年科技奖入选者。2011年12月于重庆大学冶金工程专业获工学博士学位。目前主要从事连铸凝固工艺与理论、冶金过程检测及智能控制、金属凝固组织性能与热处理、冶金过程仿真与优化等方面的研究工作。截至2024年7月,主持国家级项目4项、省部级项目8项、企业项目近20项;以第一/通信作者发表学术论文170余篇,其中SCI论文80余篇,EI论文20余篇;授权发明专利35件;编写出版教材1本。获中国产学研合作创新成果奖二等奖、全国高校冶金院长奖、四川省冶金青年科技奖一等奖、中冶集团科学技术一等奖等荣誉奖励20余项。longmujun@cqu.edu.cn   
作者简介:  艾松元,2018年6月于重庆大学获得工学学士学位。现为重庆大学材料科学与工程学院博士研究生,在龙木军教授和陈登福教授的指导下进行研究。主要研究领域为连铸凝固工艺与理论、金属凝固组织性能与热处理,截止2024年7月,以第一作者发表学术论文14篇;授权发明专利4件(含美国专利1件);获全国大学生冶金科技竞赛特等奖2项、一等奖1项。
引用本文:    
艾松元, 王凯, 龙木军, 张浩浩, 陈登福, 段华美. 汽车用IF钢连铸坯第Ⅲ脆性区及其形成机理分析[J]. 材料导报, 2024, 38(14): 22100112-7.
AI Songyuan, WANG Kai, LONG Mujun, ZHANG Haohao, CHEN Dengfu, DUAN Huamei. The Third Brittle Region and Its Mechanism Analysis of IF Steel Slab Used in Automobile. Materials Reports, 2024, 38(14): 22100112-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100112  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22100112
1 Wang X J, Cai K K, Dang Z J, et al. Journal of University of Science and Technology Beijing, 1992(1), 28 (in Chinese).
王学杰, 蔡开科, 党紫九, 等. 北京科技大学学报, 1992(1), 28.
2 Thomas B G, Brimacombe J K, Samarasekera I V. ISS Trans, 1986, 7(10), 7.
3 Luo D Q, Xie F M, Wang Z G, et al. Materials Reports, 2016, 30(12), 90 (in Chinese).
罗迪强, 谢飞鸣, 汪志刚, 等. 材料导报, 2016, 30(12), 90.
4 Ai S Y, Long M J, Zhang M Y, et al. Iron Steel, 2019, 54(8), 194 (in Chinese).
艾松元, 龙木军, 张梦远, 等. 钢铁, 2019, 54(8), 194.
5 Li L, Du Y Z, Wang Q Z, et al. China Metallurgy, 2021, 31(4), 32 (in Chinese).
李丽, 杜一哲, 汪勤政, 等. 中国冶金, 2021, 31(4), 32.
6 Chen D F, Gao X J, Wang Q M, et al. The Chinese Journal of Process Engineering, 2009, 9(S1), 210 (in Chinese).
陈登福, 高兴健, 王启明, 等. 过程工程学报, 2009, 9(S1), 210.
7 Xu L J, Qiu C G, Zhang S L. Materials Reports, 2017, 31(S2), 340 (in Chinese).
徐李军, 邱春根, 张淑兰. 材料导报, 2017, 31(S2), 340.
8 Xiong Z Q, Xu G, Yuan Q. Journal of Wuhan University of Science and Technology, 2020, 43(1), 15 (in Chinese).
熊志强, 徐光, 袁清. 武汉科技大学学报, 2020, 43(1), 15.
9 Fang L, Xiao J, Li X, et al. Journal of Iron and Steel Research, 2022, 34(8), 859 (in Chinese).
樊雷, 肖娟, 李显, 等. 钢铁研究学报, 2022, 34(8), 859.
10 Qin F C, Qi H P, Li Y T, et al. Materials Reports, 2020, 34(12), 12132 (in Chinese).
秦芳诚, 齐会萍, 李永堂, 等. 材料导报, 2020, 34(12), 12132.
11 Mintz B. ISIJ International, 1999, 39(9), 833.
12 Cai K K. Continuous Casting, 1994(4), 42 (in Chinese).
蔡开科. 连铸, 1994(4), 42.
13 Mintz B, Abushosha R, Jonas J J. ISIJ International, 1992, 32(2), 241.
14 Mintz B. Materials Science and Technology, 2008, 24(1), 112.
15 Mintz B, Lewis J, Jonas J J. Materials Science and Technology, 1997, 13(5), 379.
16 Maehara Y, Ohmori Y. Materials Science and Engineering, 1984, 62(1), 109.
17 Dong Z H. Evolution of steel property in continuous casting and its ab initio investigations for Fe matrix at elevated temperatures. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese).
董志华. 高温连铸过程钢的性能演化及 Fe 基体相性能的第一性原理研究. 博士学位论文, 重庆大学, 2016.
18 Wan X L, Wu K M, Huang G, et al. International Journal of Minerals, Metallurgy and Materials, 2014, 21(9), 878.
19 Liu T, Chen D F, Long M J, et al. Metal Science and Heat Treatment, 2020, 61(9-10), 534.
20 Liu T, Long M J, Gui L T, et al. Journal of Iron and Steel Research International, 2018, 25(10), 1043.
21 Delu L, Jie F, Yong L K, et al. Journal of Materials Science and Techno-logy 2009, 18(1), 5.
22 Santillana M B. Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Ph. D. Thesis, Delft University of Techno-logy, Netherlands, 2013.
23 Liu T, Long M J, Chen D F, et al. Journal of Materials Research, 2018, 33, 967.
24 Dong Z H, Chen D F, Long M J, et al. Metallurgical and Materials Transactions B, 2016, 47(3),1553.
25 Long M J, Dong Z H, Chen D F, et al. Chinese Journal of Engineering, 2015, 37(4), 441 (in Chinese).
龙木军, 董志华, 陈登福, 等. 工程科学学报, 2015, 37(4), 441.
26 Long M J, Dong Z H, Chen D F, et al. Ironmaking & Steelmaking, 2015, 42(4), 282.
27 Ghosh C, Aranas J C, Jonas J J. Progress in Materials Science, 2016, 82, 151.
28 Mintz B, Cowley A. Materials Science and Technology, 2006, 22(3), 279.
29 Liu Z X, Li D Z, Qiao G W. Acta Metallurgica Sinica, 2005, 41(11), 19 (in Chinese).
刘朝霞, 李殿中, 乔桂文. 金属学报, 2005, 41(11), 19.
30 Wang Q, Yang Z M, Wu C J. Journal of Iron and Steel Research, 2009, 21(3), 27 (in Chinese).
王倩, 杨忠民, 吴春京. 钢铁研究学报, 2009, 21(3), 27.
31 Ai S Y, Long M J, Yang X H, et al. Journal of Materials Research and Technology, 2023, 22, 1103.
32 Cardoso G I S L, Mintz B, Yue S. Ironmaking & Steelmaking, 1995, 22(5), 365.
[1] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[2] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[3] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[4] 李太广, 黄大兴, 商红静, 谢波玮, 邹琪, 古宏伟, 丁发柱. 金属有机沉积法制备YBCO薄膜的研究进展[J]. 材料导报, 2022, 36(2): 20090054-11.
[5] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[6] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[7] 赵堃, 孛海娃, 艾桃桃, 廖仲尼, 丁镠, 冯小明. 非等原子Alx(FeCoNiCr)88-xMn12高熵合金的微观组织及力学性能[J]. 材料导报, 2022, 36(14): 22040007-7.
[8] 戎易, 王德, 陈益平, 熊震宇, 程东海, 胡德安, 邹鹏远, 李文杰. 直流磁场辅助铜-钢TIG焊接头组织和性能[J]. 材料导报, 2021, 35(22): 22137-22140.
[9] 万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰. Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算[J]. 材料导报, 2021, 35(2): 2139-2144.
[10] 张荣华, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162.
[11] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[12] 谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
[13] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[14] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[15] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed